DOI QR코드

DOI QR Code

Feasibility of Three-Dimensional Balanced Steady-State Free Precession Cine Magnetic Resonance Imaging Combined with an Image Denoising Technique to Evaluate Cardiac Function in Children with Repaired Tetralogy of Fallot

  • YaFeng Peng (Diagnostic Imaging Center of Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine) ;
  • XinYu Su (University of Shanghai for Science and Technology, Institute of Medical Imaging Engineering, School of Medical Instrument and Food Engineering) ;
  • LiWei Hu (Diagnostic Imaging Center of Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine) ;
  • Qian Wang (Diagnostic Imaging Center of Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine) ;
  • RongZhen Ouyang (Diagnostic Imaging Center of Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine) ;
  • AiMin Sun (Diagnostic Imaging Center of Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine) ;
  • Chen Guo (Diagnostic Imaging Center of Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine) ;
  • XiaoFen Yao (Diagnostic Imaging Center of Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine) ;
  • Yong Zhang (MR Research, GE Healthcare) ;
  • LiJia Wang (University of Shanghai for Science and Technology, Institute of Medical Imaging Engineering, School of Medical Instrument and Food Engineering) ;
  • YuMin Zhong (Diagnostic Imaging Center of Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine)
  • 투고 : 2020.07.03
  • 심사 : 2021.03.13
  • 발행 : 2021.09.01

초록

Objective: To investigate the feasibility of cine three-dimensional (3D) balanced steady-state free precession (b-SSFP) imaging combined with a non-local means (NLM) algorithm for image denoising in evaluating cardiac function in children with repaired tetralogy of Fallot (rTOF). Materials and Methods: Thirty-five patients with rTOF (mean age, 12 years; range, 7-18 years) were enrolled to undergo cardiac cine image acquisition, including two-dimensional (2D) b-SSFP, 3D b-SSFP, and 3D b-SSFP combined with NLM. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF) of the two ventricles were measured and indexed by body surface index. Acquisition time and image quality were recorded and compared among the three imaging sequences. Results: 3D b-SSFP with denoising vs. 2D b-SSFP had high correlation coefficients for EDV, ESV, SV, and EF of the left (0.959-0.991; p < 0.001) as well as right (0.755-0.965; p < 0.001) ventricular metrics. The image acquisition time ± standard deviation (SD) was 25.1 ± 2.4 seconds for 3D b-SSFP compared with 277.6 ± 0.7 seconds for 2D b-SSFP, indicating a significantly shorter time with the 3D than the 2D sequence (p < 0.001). Image quality score was better with 3D b-SSFP combined with denoising than with 3D b-SSFP (mean ± SD, 3.8 ± 0.6 vs. 3.5 ± 0.6; p = 0.005). Signal-to-noise ratios for blood and myocardium as well as contrast between blood and myocardium were higher for 3D b-SSFP combined with denoising than for 3D b-SSFP (p < 0.05 for all but septal myocardium). Conclusion: The 3D b-SSFP sequence can significantly reduce acquisition time compared to the 2D b-SSFP sequence for cine imaging in the evaluation of ventricular function in children with rTOF, and its quality can be further improved by combining it with an NLM denoising method.

키워드

과제정보

This work was supported by the National Key Research and Development Program of China (No.2018YFB110710), Shanghai Committee of Science and Technology (No.17411965400).

참고문헌

  1. Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Valsangiacomo Buechel ER, et al. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 2013;15:51
  2. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson 2013;15:91
  3. Maffei E, Messalli G, Martini C, Rossi A, van Pelt N, van Geuns RJ, et al. Magnetic resonance assessment of left ventricular volumes and mass using a single-breath-hold 3D k-t BLAST cine b-SSFP in comparison with multiple-breath-hold 2D cine b-SSFP. Insights Imaging 2011;2:39-45 https://doi.org/10.1007/s13244-010-0056-1
  4. Jeong D, Schiebler ML, Lai P, Wang K, Vigen KK, Francois CJ. Single breath hold 3D cardiac cine MRI using kat-ARC: preliminary results at 1.5T. Int J Cardiovasc Imaging 2015;31:851-857 https://doi.org/10.1007/s10554-015-0615-0
  5. Moghari MH, Barthur A, Amaral ME, Geva T, Powell AJ. Free-breathing whole-heart 3D cine magnetic resonance imaging with prospective respiratory motion compensation. Magn Reson Med 2018;80:181-189 https://doi.org/10.1002/mrm.27021
  6. Anand CS, Sahambi JS. Wavelet domain non-linear filtering for MRI denoising. Magn Reson Imaging 2010;28:842-861 https://doi.org/10.1016/j.mri.2010.03.013
  7. Buades A, Coll B, Morel J. A review of image denoising algorithms, with a new one. Multiscale Model Simul 2005;4:490-530 https://doi.org/10.1137/040616024
  8. Verma R, Pandey R. Non local means algorithm with adaptive isotropic search window size for image denoising. Proceedings of 2015 Annual IEEE India Conference (INDICON); 2015 Dec 17-20; New Delhi, India: IEEE; 2015; p. 1-5
  9. Feng L, Srichai MB, Lim RP, Harrison A, King W, Adluru G, et al. Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE. Magn Reson Med 2013;70:64-74 https://doi.org/10.1002/mrm.24440
  10. Haji-Valizadeh H, Rahsepar AA, Collins JD, Bassett E, Isakova T, Block T, et al. Validation of highly accelerated real-time cardiac cine MRI with radial k-space sampling and compressed sensing in patients at 1.5T and 3T. Magn Reson Med 2018;79:2745-2751 https://doi.org/10.1002/mrm.26918
  11. Matsumoto H, Matsuda T, Miyamoto K, Nakatsuma K, Sugahara M, Shimada T. Feasibility of free-breathing late gadolinium-enhanced cardiovascular MRI for assessment of myocardial infarction: navigator-gated versus single-shot imaging. Int J Cardiol 2013;168:94-99 https://doi.org/10.1016/j.ijcard.2012.09.066
  12. Qi H, Bustin A, Cruz G, Jaubert O, Chen H, Botnar RM, et al. Free-running simultaneous myocardial T1/T2 mapping and cine imaging with 3D whole-heart coverage and isotropic spatial resolution. Magn Reson Imaging 2019;63:159-169 https://doi.org/10.1016/j.mri.2019.08.008
  13. de Torres-Alba F, Kaleschke G, Baumgartner H. Impact of percutaneous pulmonary valve implantation on the timing of reintervention for right ventricular outflow tract dysfunction. Rev Esp Cardiol (Engl Ed) 2018;71:838-846 https://doi.org/10.1016/j.recesp.2018.03.022
  14. Tatewaki H, Shiose A. Pulmonary valve replacement after repaired tetralogy of Fallot. Gen Thorac Cardiovasc Surg 2018;66:509-515 https://doi.org/10.1007/s11748-018-0931-0
  15. Tweddell JS, Simpson P, Li SH, Dunham-Ingle J, Bartz PJ, Earing MG, et al. Timing and technique of pulmonary valve replacement in the patient with tetralogy of Fallot. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2012;15:27-33 https://doi.org/10.1053/j.pcsu.2012.01.007
  16. Barton K, Nickerson JP, Higgins T, Williams RK. Pediatric anesthesia and neurotoxicity: what the radiologist needs to know. Pediatr Radiol 2018;48:31-36 https://doi.org/10.1007/s00247-017-3871-4
  17. Tucker EW, Jain SK, Mahesh M. Balancing the risks of radiation and anesthesia in pediatric patients. J Am Coll Radiol 2017;14:1459-1461
  18. McCann ME, de Graaff JC, Dorris L, Disma N, Withington D, Bell G, et al. Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): an international, multicentre, randomised, controlled equivalence trial. Lancet 2019;393:664-677 https://doi.org/10.1016/S0140-6736(18)32485-1
  19. Ing CH, DiMaggio CJ, Whitehouse AJ, Hegarty MK, Sun M, von Ungern-Sternberg BS, et al. Neurodevelopmental outcomes after initial childhood anesthetic exposure between ages 3 and 10 years. J Neurosurg Anesthesiol 2014;26:377-386 https://doi.org/10.1097/ANA.0000000000000121
  20. Menchon-Lara RM, Simmross-Wattenberg F, Casasecade-la-Higuera P, Martin-Fernandez M, Alberola-Lopez C. Reconstruction techniques for cardiac cine MRI. Insights Imaging 2019;10:100
  21. Jung BA, Hennig J, Scheffler K. Single-breathhold 3D-trueFISP cine cardiac imaging. Magn Reson Med 2002;48:921-925 https://doi.org/10.1002/mrm.10280
  22. Greil GF, Germann S, Kozerke S, Baltes C, Tsao J, Urschitz MS, et al. Assessment of left ventricular volumes and mass with fast 3D cine steady-state free precession k-t space broad-use linear acquisition speed-up technique (k-t BLAST). J Magn Reson Imaging 2008;27:510-515 https://doi.org/10.1002/jmri.21200
  23. Thiele H, Nagel E, Paetsch I, Schnackenburg B, Bornstedt A, Kouwenhoven M, et al. Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 2001;14:362-367 https://doi.org/10.1002/jmri.1195
  24. Lai P, Brau AC, Beatty PJ, Shankaranarayanan A. Highly-accelerated cardiac cine MR imaging using kats ARC (autocalibrating reconstruction for Cartesian sampling with k-& adaptive-t-space data synthesis). Proc Intl Soc Mag Reson Med 2009;17:767
  25. Lai P, Alley MT, Vasanawala SS, Brau AC. Single-breathhold three-dimensional cardiac cine MRI with retrospective cardiac gating using high acceleration kat ARC (k- & adaptive t-autocalibrating reconstruction for Cartesian sampling). Proc Intl Soc Mag Reson Med 2011;19:3378
  26. Holst K, Ugander M, Sigfridsson A. Left ventricular volume measurements with free breathing respiratory self-gated 3-dimensional golden angle radial whole-heart cine imaging - Feasibility and reproducibility. Magn Reson Imaging 2017;43:48-55
  27. Amano Y, Suzuki Y, van Cauteren M. Evaluation of global cardiac functional parameters using single-breath-hold three-dimensional cine steady-state free precession MR imaging with two types of speed-up techniques: comparison with two-dimensional cine imaging. Comput Med Imaging Graph 2008;32:61-66 https://doi.org/10.1016/j.compmedimag.2007.09.003
  28. Makowski MR, Wiethoff AJ, Jansen CH, Uribe S, Parish V, Schuster A, et al. Single breath-hold assessment of cardiac function using an accelerated 3D single breath-hold acquisition technique--comparison of an intravascular and extravascular contrast agent. J Cardiovasc Magn Reson 2012;14:53
  29. Srinivasan S, Ennis DB. Variable flip angle balanced steady-state free precession for lower SAR or higher contrast cardiac cine imaging. Magn Reson Med 2014;71:1035-1043 https://doi.org/10.1002/mrm.24764
  30. van der Ven JPG, Sadighy Z, Valsangiacomo Buechel ER, Sarikouch S, Robbers-Visser D, Kellenberger CJ, et al. Multicentre reference values for cardiac magnetic resonance imaging derived ventricular size and function for children aged 0-18 years. Eur Heart J Cardiovasc Imaging 2020;21:102-113 https://doi.org/10.1093/ehjci/jez164
  31. Chen G, Zhang P, Wu Y, Shen D, Yap PT. Denoising magnetic resonance images using collaborative non-local means. Neurocomputing 2016;177:215-227 https://doi.org/10.1016/j.neucom.2015.11.031
  32. Yu H, Ding M, Zhang X. Laplacian eigenmaps network-based nonlocal means method for MR image denoising. Sensors (Basel) 2019;19:2918
  33. Kim B, Han M, Shim H, Baek J. A performance comparison of convolutional neural network-based image denoising methods: the effect of loss functions on low-dose CT images. Med Phys 2019;46:3906-3923 https://doi.org/10.1002/mp.13713
  34. Goo HW. Semiautomatic three-dimensional threshold-based cardiac computed tomography ventricular volumetry in repaired tetralogy of Fallot: comparison with cardiac magnetic resonance imaging. Korean J Radiol 2019;20:102-113 https://doi.org/10.3348/kjr.2018.0237