DOI QR코드

DOI QR Code

Quantification of Pancreas Surface Lobularity on CT: A Feasibility Study in the Normal Pancreas

  • 투고 : 2020.09.03
  • 심사 : 2020.11.03
  • 발행 : 2021.08.01

초록

Objective: To assess the feasibility and reproducibility of pancreatic surface lobularity (PSL) quantification derived from abdominal computed tomography (CT) in a population of patients free from pancreatic disease. Materials and Methods: This retrospective study included 265 patients free from pancreatic disease who underwent contrast-enhanced abdominal CT between 2017 and 2019. A maximum of 11 individual PSL measurements were performed by two abdominal radiologists (head [5 measurements], body, and tail [3 measurements each]) using dedicated software. The influence of age, body mass index (BMI), and sex on PSL was assessed using the Pearson correlation and repeated measurements. Inter-reader agreement was assessed using the intraclass correlation coefficient (ICC) and Bland Altman (BA) plots. Results: CT images of 15 (6%) patients could not be analyzed. A total of 2750 measurements were performed in the remaining 250 patients (143 male [57%], mean age 45 years [range, 18-91]), and 2237 (81%) values were obtained in the head 951/1250 (76%), body 609/750 (81%), and tail 677/750 (90%). The mean ± standard deviation PSL was 6.53 ± 1.37. The mean PSL was significantly higher in male than in female (6.89 ± 1.30 vs. 6.06 ± 1.31, respectively, p < 0.001). PSL gradually increased with age (r = 0.32, p < 0.001) and BMI (r = 0.32, p < 0.001). Inter-reader agreement was excellent (ICC 0.82 [95% confidence interval 0.72-0.85], with a BA bias of 0.30 and 95% limits of agreement of -1.29 and 1.89). Conclusion: CT-based PSL quantification is feasible with a high success rate and inter-reader agreement in subjects free from pancreatic disease. Significant variations were observed according to sex, age, and BMI. This study provides a reference for future studies.

키워드

참고문헌

  1. RSNA. Quantitative imaging biomarkers alliance. Rsna.org Web site. https://www.rsna.org/en/research/quantitative-imagingbiomarkers-alliance. Accessed June 7, 2020
  2. Rosenkrantz AB, Mendiratta-Lala M, Bartholmai BJ, Ganeshan D, Abramson RG, Burton KR, et al. Clinical utility of quantitative imaging. Acad Radiol 2015;22:33-49 https://doi.org/10.1016/j.acra.2014.08.011
  3. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228-247 https://doi.org/10.1016/j.ejca.2008.10.026
  4. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000;92:205-216 https://doi.org/10.1093/jnci/92.3.205
  5. de Franchis R; Baveno VI Faculty. Expanding consensus in portal hypertension: report of the Baveno VI Consensus Workshop: stratifying risk and individualizing care for portal hypertension. J Hepatol 2015;63:743-752 https://doi.org/10.1016/j.jhep.2015.05.022
  6. European Association for Study of Liver; Asociacion Latinoamericana para el Estudio del Higado. EASLALEH Clinical Practice Guidelines: non-invasive tests for evaluation of liver disease severity and prognosis. J Hepatol 2015;63:237-264 https://doi.org/10.1016/j.jhep.2015.04.006
  7. Berzigotti A, Ashkenazi E, Reverter E, Abraldes JG, Bosch J. Non-invasive diagnostic and prognostic evaluation of liver cirrhosis and portal hypertension. Dis Markers 2011;31:129-138 https://doi.org/10.1155/2011/954812
  8. Goyal N, Jain N, Rachapalli V, Cochlin DL, Robinson M. Noninvasive evaluation of liver cirrhosis using ultrasound. Clin Radiol 2009;64:1056-1066
  9. Romero M, Palmer SL, Kahn JA, Ihde L, Lin LM, Kosco A, et al. Imaging appearance in acute liver failure: correlation with clinical and pathology findings. Dig Dis Sci 2014;59:1987-1995 https://doi.org/10.1007/s10620-014-3106-6
  10. Colli A, Fraquelli M, Andreoletti M, Marino B, Zuccoli E, Conte D. Severe liver fibrosis or cirrhosis: accuracy of US for detection--analysis of 300 cases. Radiology 2003;227:89-94 https://doi.org/10.1148/radiol.2272020193
  11. Gaiani S, Gramantieri L, Venturoli N, Piscaglia F, Siringo S, D'Errico A, et al. What is the criterion for differentiating chronic hepatitis from compensated cirrhosis? A prospective study comparing ultrasonography and percutaneous liver biopsy. J Hepatol 1997;27:979-985 https://doi.org/10.1016/S0168-8278(97)80140-7
  12. Smith AD, Branch CR, Zand K, Subramony C, Zhang H, Thaggard K, et al. Liver surface nodularity quantification from routine CT images as a biomarker for detection and evaluation of cirrhosis. Radiology 2016;280:771-781 https://doi.org/10.1148/radiol.2016151542
  13. Smith AD, Zand KA, Florez E, Sirous R, Shlapak D, Souza F, et al. Liver surface nodularity score allows prediction of cirrhosis decompensation and death. Radiology 2017;283:711-722 https://doi.org/10.1148/radiol.2016160799
  14. Sartoris R, Rautou PE, Elkrief L, Pollorsi G, Durand F, Valla D, et al. Quantification of liver surface nodularity at CT: utility for detection of portal hypertension. Radiology 2018;289:698-707 https://doi.org/10.1148/radiol.2018181131
  15. Hobeika C, Cauchy F, Sartoris R, Beaufrere A, Yoh T, Vilgrain V, et al. Relevance of liver surface nodularity for preoperative risk assessment in patients with resectable hepatocellular carcinoma. Br J Surg 2020;107:878-888 https://doi.org/10.1002/bjs.11511
  16. Sato T, Ito K, Tamada T, Sone T, Noda Y, Higaki A, et al. Age-related changes in normal adult pancreas: MR imaging evaluation. Eur J Radiol 2012;81:2093-2098 https://doi.org/10.1016/j.ejrad.2011.07.014
  17. Prokesch RW, Chow LC, Beaulieu CF, Bammer R, Jeffrey RB Jr. Isoattenuating pancreatic adenocarcinoma at multi-detector row CT: secondary signs. Radiology 2002;224:764-768 https://doi.org/10.1148/radiol.2243011284
  18. Manfredi R, Graziani R, Cicero C, Frulloni L, Carbognin G, Mantovani W, et al. Autoimmune pancreatitis: CT patterns and their changes after steroid treatment. Radiology 2008;247:435-443 https://doi.org/10.1148/radiol.2472070598
  19. Gilbeau JP, Poncelet V, Libon E, Derue G, Heller FR. The density, contour, and thickness of the pancreas in diabetics: CT findings in 57 patients. AJR Am J Roentgenol 1992;159:527-531 https://doi.org/10.2214/ajr.159.3.1503017
  20. Linn S. The injury severity score--importance and uses. Ann Epidemiol 1995;5:440-446 https://doi.org/10.1016/1047-2797(95)00059-3
  21. Netter FH. Atlas of human anatomy, 5th ed. Philadelphia: Saunders, 2014:277-282
  22. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-174 https://doi.org/10.2307/2529310
  23. Sartoris R, Lazareth M, Nivolli A, Dioguardi Burgio M, Vilgrain V, Ronot M. CT-based liver surface nodularity for the detection of clinically significant portal hypertension: defining measurement quality criteria. Abdom Radiol (NY) 2020;45:2755-2763 https://doi.org/10.1007/s00261-020-02519-1
  24. Matsuda Y. Age-related morphological changes in the pancreas and their association with pancreatic carcinogenesis. Pathol Int 2019;69:450-462 https://doi.org/10.1111/pin.12837
  25. Heuck A, Maubach PA, Reiser M, Feuerbach S, Allgayer B, Lukas P, et al. Age-related morphology of the normal pancreas on computed tomography. Gastrointest Radiol 1987;12:18-22 https://doi.org/10.1007/BF01885094
  26. Rebours V, Gaujoux S, d'Assignies G, Sauvanet A, Ruszniewski P, Levy P, et al. Obesity and fatty pancreatic infiltration are risk factors for pancreatic precancerous lesions (PanIN). Clin Cancer Res 2015;21:3522-3528 https://doi.org/10.1158/1078-0432.CCR-14-2385
  27. Saisho Y, Butler AE, Meier JJ, Monchamp T, Allen-Auerbach M, Rizza RA, et al. Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin Anat 2007;20:933-942 https://doi.org/10.1002/ca.20543
  28. DeSouza SV, Singh RG, Yoon HD, Murphy R, Plank LD, Petrov MS. Pancreas volume in health and disease: a systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol 2018;12:757-766 https://doi.org/10.1080/17474124.2018.1496015
  29. Khoury T, Asombang AW, Berzin TM, Cohen J, Pleskow DK, Mizrahi M. The clinical implications of fatty pancreas: a concise review. Dig Dis Sci 2017;62:2658-2667 https://doi.org/10.1007/s10620-017-4700-1
  30. Mathur A, Pitt HA, Marine M, Saxena R, Schmidt CM, Howard TJ, et al. Fatty pancreas: a factor in postoperative pancreatic fistula. Ann Surg 2007;246:1058-1064 https://doi.org/10.1097/SLA.0b013e31814a6906
  31. Kim SY, Kim H, Cho JY, Lim S, Cha K, Lee KH, et al. Quantitative assessment of pancreatic fat by using unenhanced CT: pathologic correlation and clinical implications. Radiology 2014;271:104-112 https://doi.org/10.1148/radiol.13122883
  32. Lim S, Bae JH, Chun EJ, Kim H, Kim SY, Kim KM, et al. Differences in pancreatic volume, fat content, and fat density measured by multidetector-row computed tomography according to the duration of diabetes. Acta Diabetol 2014;51:739-748 https://doi.org/10.1007/s00592-014-0581-3
  33. Jang S, Kim JH, Choi SY, Park SJ, Han JK. Application of computerized 3D-CT texture analysis of pancreas for the assessment of patients with diabetes. PLoS One 2020;15:e0227492
  34. Ozbulbul NI, Yurdakul M, Tola M. Does the visceral fat tissue show better correlation with the fatty replacement of the pancreas than with BMI? Eurasian J Med 2010;42:24-27 https://doi.org/10.5152/eajm.2010.08
  35. Singh RG, Cervantes A, Kim JU, Nguyen NN, DeSouza SV, Dokpuang D, et al. Intrapancreatic fat deposition and visceral fat volume are associated with the presence of diabetes after acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2019;316:G806-G815 https://doi.org/10.1152/ajpgi.00385.2018