DOI QR코드

DOI QR Code

Characterization of Brain Microstructural Abnormalities in High Myopia Patients: A Preliminary Diffusion Kurtosis Imaging Study

  • Huihui Wang (Department of Radiology, Beijing Friendship Hospital, Capital Medical University) ;
  • Hongwei Wen (Key Laboratory of Cognition and Personality (Ministry of Education), School of Psychology, Southwest University) ;
  • Jing Li (Department of Radiology, Beijing Friendship Hospital, Capital Medical University) ;
  • Qian Chen (Department of Radiology, Beijing Friendship Hospital, Capital Medical University) ;
  • Shanshan Li (Department of Radiology, Beijing Friendship Hospital, Capital Medical University) ;
  • Yanling Wang (Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University) ;
  • Zhenchang Wang (Department of Radiology, Beijing Friendship Hospital, Capital Medical University)
  • Received : 2020.02.27
  • Accepted : 2020.07.17
  • Published : 2021.07.01

Abstract

Objective: To evaluate microstructural damage in high myopia (HM) patients using 3T diffusion kurtosis imaging (DKI). Materials and Methods: This prospective study included 30 HM patients and 33 age- and sex-matched healthy controls (HCs) with DKI. Kurtosis parameters including kurtosis fractional anisotropy (FA), mean kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK) as well as diffusion metrics including FA, mean diffusivity, axial diffusivity (AD), and radial diffusivity derived from DKI were obtained. Group differences in these metrics were compared using tract-based spatial statistics. Partial correlation analysis was used to evaluate correlations between microstructural changes and disease duration. Results: Compared to HCs, HM patients showed significantly reduced AK, RK, MK, and FA and significantly increased AD, predominately in the bilateral corticospinal tract, right inferior longitudinal fasciculus, superior longitudinal fasciculus, inferior fronto-occipital fasciculus, and left thalamus (all p < 0.05, threshold-free cluster enhancement corrected). In addition, DKI-derived kurtosis parameters (AK, RK, and MK) had negative correlations (r = -0.448 to -0.376, all p < 0.05) and diffusion parameter (AD) had positive correlations (r = 0.372 to 0.409, all p < 0.05) with disease duration. Conclusion: HM patients showed microstructural alterations in the brain regions responsible for motor conduction and vision-related functions. DKI is useful for detecting white matter abnormalities in HM patients, which might be helpful for exploring and monitoring the pathogenesis of the disease.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (grant number: 61527807, 81800840, 81701644, 61801311, 81871322), Beijing Scholars Program (grant number: [2015] 160), Beijing Municipal Administration of Hospitals (grant number: SML20150101, PX2018001, YYZZ2017A14, YYZZ2017B01), and Fundamental Research Funds for the Central Universities (SWU118065).

References

  1. Holden BA, Wilson DA, Jong M, Sankaridurg P, Fricke TR, Smith EL III, et al. Myopia: a growing global problem with sight-threatening complications. Community Eye Health 2015;28:35 
  2. Morgan IG, French AN, Ashby RS, Guo X, Ding X, He M, et al. The epidemics of myopia: aetiology and prevention. Prog Retin Eye Res 2018;62:134-149  https://doi.org/10.1016/j.preteyeres.2017.09.004
  3. Hsu CC, Chen SJ, Li AF, Lee FL. Systolic blood pressure, choroidal thickness, and axial length in patients with myopic maculopathy. J Chin Med Assoc 2014;77:487-491  https://doi.org/10.1016/j.jcma.2014.06.009
  4. Morgan IG, Ohno-Matsui K, Saw SM. Myopia. Lancet 2012;379:1739-1748  https://doi.org/10.1016/S0140-6736(12)60272-4
  5. Huang X, Hu Y, Zhou F, Xu X, Wu Y, Jay R, et al. Altered whole-brain gray matter volume in high myopia patients: a voxel-based morphometry study. Neuroreport 2018;29:760-767  https://doi.org/10.1097/WNR.0000000000001028
  6. Li Q, Guo M, Dong H, Zhang Y, Fu Y, Yin X. Voxel-based analysis of regional gray and white matter concentration in high myopia. Vision Res 2012;58:45-50  https://doi.org/10.1016/j.visres.2012.02.005
  7. Shu N, Li J, Li K, Yu C, Jiang T. Abnormal diffusion of cerebral white matter in early blindness. Hum Brain Mapp 2009;30:220-227  https://doi.org/10.1002/hbm.20507
  8. Marcus MW, de Vries MM, Junoy Montolio FG, Jansonius NM. Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. Ophthalmology 2011;118:1989-1994.e2  https://doi.org/10.1016/j.ophtha.2011.03.012
  9. Xu ZF, Sun JS, Zhang XH, Feng YY, Pan AZ, Gao MY, et al. Microstructural visual pathway abnormalities in patients with primary glaucoma: 3 T diffusion kurtosis imaging study. Clin Radiol 2018;73:591.e9-591.e15  https://doi.org/10.1016/j.crad.2018.01.010
  10. Allen B, Schmitt MA, Kushner BJ, Rokers B. Retinothalamic white matter abnormalities in amblyopia. Invest Ophthalmol Vis Sci 2018;59:921-929  https://doi.org/10.1167/iovs.17-22930
  11. Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review. NMR Biomed 2002;15:456-467  https://doi.org/10.1002/nbm.783
  12. Veraart J, Poot DH, Van Hecke W, Blockx I, Van der Linden A, Verhoye M, et al. More accurate estimation of diffusion tensor parameters using diffusion kurtosis imaging. Magn Reson Med 2011;65:138-145  https://doi.org/10.1002/mrm.22603
  13. Zhu J, Zhuo C, Qin W, Wang D, Ma X, Zhou Y, et al. Performances of diffusion kurtosis imaging and diffusion tensor imaging in detecting white matter abnormality in schizophrenia. Neuroimage Clin 2015;7:170-176  https://doi.org/10.1016/j.nicl.2014.12.008
  14. Tabesh A, Jensen JH, Ardekani BA, Helpern JA. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med 2011;65:823-836  https://doi.org/10.1002/mrm.22655
  15. Wen H, Liu Y, Wang J, Rekik I, Zhang J, Zhang Y, et al. Combining tract-and atlas-based analysis reveals microstructural abnormalities in early tourette syndrome children. Hum Brain Mapp 2016;37:1903-1919  https://doi.org/10.1002/hbm.23146
  16. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006;31:1487-1505  https://doi.org/10.1016/j.neuroimage.2006.02.024
  17. Wu EX, Cheung MM. MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed 2010;23:836-848  https://doi.org/10.1002/nbm.1506
  18. Wang R, Tang Z, Sun X, Wu L, Wang J, Zhong Y, et al. White matter abnormalities and correlation with severity in normal tension glaucoma: a whole brain atlas-based diffusion tensor study. Invest Ophthalmol Vis Sci 2018;59:1313-1322  https://doi.org/10.1167/iovs.17-23597
  19. Falangola MF, Guilfoyle DN, Tabesh A, Hui ES, Nie X, Jensen JH, et al. Histological correlation of diffusional kurtosis and white matter modeling metrics in cuprizone-induced corpus callosum demyelination. NMR Biomed 2014;27:948-957  https://doi.org/10.1002/nbm.3140
  20. Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 2003;20:1714-1722  https://doi.org/10.1016/j.neuroimage.2003.07.005
  21. van der Valk P, De Groot CJ. Staging of multiple sclerosis (MS) lesions: pathology of the time frame of MS. Neuropathol Appl Neurobiol 2000;26:2-10  https://doi.org/10.1046/j.1365-2990.2000.00217.x
  22. De Stefano N, Narayanan S, Francis GS, Arnaoutelis R, Tartaglia MC, Antel JP, et al. Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 2001;58:65-70  https://doi.org/10.1001/archneur.58.1.65
  23. Phillips J. Rethinking multiple sclerosis. Arch Neurol 2001;58:30-32  https://doi.org/10.1001/archneur.58.1.30
  24. Glenn GR, Helpern JA, Tabesh A, Jensen JH. Quantitative assessment of diffusional kurtosis anisotropy. NMR Biomed 2015;28:448-459  https://doi.org/10.1002/nbm.3271
  25. Douaud G, Jbabdi S, Behrens TE, Menke RA, Gass A, Monsch AU, et al. DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild alzheimer's disease. Neuroimage 2011;55:880-890  https://doi.org/10.1016/j.neuroimage.2010.12.008
  26. Zhang Y, Du G, Yang Y, Qin W, Li X, Zhang Q. Corrigendum: higher integrity of the motor and visual pathways in long-term video game players. Front Hum Neurosci 2015;9:98 
  27. Wang D, Qin W, Liu Y, Zhang Y, Jiang T, Yu C. Altered white matter integrity in the congenital and late blind people. Neural Plast 2013;2013:128236 
  28. Long M, Wang L, Tian Q, Ding H, Qin W, Shi D, et al. Brain white matter changes in asymptomatic carriers of Leber's hereditary optic neuropathy. J Neurol 2019;266:1474-1480  https://doi.org/10.1007/s00415-019-09284-2
  29. Lundberg K, Suhr Thykjaer A, Sogaard Hansen R, Vestergaard AH, Jacobsen N, Goldschmidt E, et al. Physical activity and myopia in danish children-the CHAMPS eye study. Acta Ophthalmol 2018;96:134-141  https://doi.org/10.1111/aos.13513
  30. Parks EL, Madden DJ. Brain connectivity and visual attention. Brain Connect 2013;3:317-338  https://doi.org/10.1089/brain.2012.0139
  31. Chechlacz M, Rotshtein P, Hansen PC, Riddoch JM, Deb S, Humphreys GW. The Neural underpinings of simultanagnosia: disconnecting the visuospatial attention network. J Cogn Neurosci 2012;24:718-735  https://doi.org/10.1162/jocn_a_00159
  32. Klarborg B, Skak Madsen K, Vestergaard M, Skimminge A, Jernigan TL, Baare WF. Sustained attention is associated with right superior longitudinal fasciculus and superior parietal white matter microstructure in children. Hum Brain Mapp 2013;34:3216-3232  https://doi.org/10.1002/hbm.22139
  33. Catani M, Jones DK, Donato R, Ffytche DH. Occipito-temporal connections in the human brain. Brain 2003;126:2093-2107  https://doi.org/10.1093/brain/awg203
  34. Catani M, Thiebaut de Schotten M. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 2008;44:1105-1132  https://doi.org/10.1016/j.cortex.2008.05.004
  35. Shin J, Rowley J, Chowdhury R, Jolicoeur P, Klein D, Grova C, et al. Inferior longitudinal fasciculus' role in visual processing and language comprehension: a combined MEG-DTI study. Front Neurosci 2019;13:875 
  36. Ross ED. Sensory-specific amnesia and hypoemotionality in humans and monkeys: gateway for developing a hodology of memory. Cortex 2008;44:1010-1022  https://doi.org/10.1016/j.cortex.2008.02.002
  37. Umarova RM, Saur D, Schnell S, Kaller CP, Vry MS, Glauche V, et al. Structural connectivity for visuospatial attention: significance of ventral pathways. Cereb Cortex 2010;20:121-129  https://doi.org/10.1093/cercor/bhp086
  38. Fox CJ, Iaria G, Barton JJ. Disconnection in prosopagnosia and face processing. Cortex 2008;44:996-1009  https://doi.org/10.1016/j.cortex.2008.04.003
  39. Philippi CL, Mehta S, Grabowski T, Adolphs R, Rudrauf D. Damage to association fiber tracts impairs recognition of the facial expression of emotion. J Neurosci 2009;29:15089-15099  https://doi.org/10.1523/JNEUROSCI.0796-09.2009
  40. Mayer KM, Vuong QC. TBSS and probabilistic tractography reveal white matter connections for attention to object features. Brain Struct Funct 2014;219:2159-2171  https://doi.org/10.1007/s00429-013-0631-6
  41. Kang DW, Kim D, Chang LH, Kim YH, Takahashi E, Cain MS, et al. Structural and functional connectivity changes beyond visual cortex in a later phase of visual perceptual learning. Sci Rep 2018;8:5186 
  42. Phillips JW, Schulmann A, Hara E, Winnubst J, Liu C, Valakh V, et al. A repeated molecular architecture across thalamic pathways. Nat Neurosci 2019;22:1925-1935  https://doi.org/10.1038/s41593-019-0483-3
  43. Van Cauter S, Veraart J, Sijbers J, Peeters RR, Himmelreich U, De Keyzer F, et al. Gliomas: diffusion kurtosis MR imaging in grading. Radiology 2012;263:492-501  https://doi.org/10.1148/radiol.12110927
  44. Lu P, Shi L, Du H, Xie B, Li C, Li S, et al. Reduced white matter integrity in primary open-angle glaucoma: a DTI study using tract-based spatial statistics. J Neuroradiol 2013;40:89-93 https://doi.org/10.1016/j.neurad.2012.04.001