DOI QR코드

DOI QR Code

Prostate Imaging-Reporting and Data System: Comparison of the Diagnostic Performance between Version 2.0 and 2.1 for Prostatic Peripheral Zone

  • Hyun Soo Kim (Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Ghee Young Kwon (Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Min Je Kim (Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Sung Yoon Park (Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • Received : 2020.07.06
  • Accepted : 2020.12.17
  • Published : 2021.07.01

Abstract

Objective: To compare the diagnostic performance between Prostate Imaging-Reporting and Data System version 2.0 (PI-RADSv2.0) and version 2.1 (PI-RADSv2.1) for clinically significant prostate cancer (csPCa) in the peripheral zone (PZ). Materials and Methods: This retrospective study included 317 patients who underwent multiparametric magnetic resonance imaging and targeted biopsy for PZ lesions. Definition of csPCa was International Society of Urologic Pathology grade ≥ 2 cancer. Area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for csPCa were analyzed by two readers. The cancer detection rate (CDR) for csPCa was investigated according to the PI-RADS categories. Results: AUC of PI-RADSv2.1 (0.856 and 0.858 for reader 1 and 2 respectively) was higher than that of PI-RADSv2.0 (0.795 and 0.747 for reader 1 and 2 respectively) (both p < 0.001). Sensitivity, specificity, PPV, NPV, and accuracy for PI-RADSv2.0 vs. PI-RADSv2.1 were 93.2% vs. 88.3% (p = 0.023), 52.8% vs. 76.6% (p < 0.001), 48.7% vs. 64.5% (p < 0.001), 94.2% vs. 93.2% (p = 0.504), and 65.9% vs. 80.4% (p < 0.001) for reader 1, and 96.1% vs. 92.2% (p = 0.046), 34.1% vs. 72.4% (p < 0.001), 41.3% vs. 61.7% (p < 0.001), 94.8% vs. 95.1% (p = 0.869), and 54.3% vs. 78.9% (p < 0.001) for reader 2, respectively. CDRs of PI-RADS categories 1-2, 3, 4, and 5 for PI-RADSv2.0 vs. PI-RADSv2.1 were 5.9% vs. 5.9%, 5.8% vs. 12.5%, 39.8% vs. 56.2%, and 88.9% vs. 88.9% for reader 1; and 4.5% vs. 4.1%, 6.1% vs. 11.1%, 32.5% vs. 53.4%, and 85.0% vs. 86.8% for reader 2, respectively. Conclusion: Our data demonstrated improved AUC, specificity, PPV, accuracy, and CDRs of category 3 or 4 of PI-RADSv2.1, but decreased sensitivity, compared with PI-RADSv2.0, for csPCa in PZ.

Keywords

References

  1. Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol 2019;76:340-351 https://doi.org/10.1016/j.eururo.2019.02.033
  2. Padhani AR, Weinreb J, Rosenkrantz AB, Villeirs G, Turkbey B, Barentsz J. Prostate imaging-reporting and data system steering committee: PI-RADS v2 status update and future directions. Eur Urol 2019;75:385-396 https://doi.org/10.1016/j.eururo.2018.05.035
  3. Fulgham PF, Rukstalis DB, Turkbey IB, Rubenstein JN, Taneja S, Carroll PR, et al. AUA policy statement on the use of multiparametric magnetic resonance imaging in the diagnosis, staging and management of prostate cancer. J Urol 2017;198:832-838 https://doi.org/10.1016/j.juro.2017.04.101
  4. European Association of Urology. Prostate cancer. Uroweb. org Web site. https://uroweb.org/guideline/prostate-cancer/. Published 2019. Accessed December 10, 2019
  5. Hofbauer SL, Maxeiner A, Kittner B, Heckmann R, Reimann M, Wiemer L, et al. Validation of prostate imaging reporting and data system version 2 for the detection of prostate cancer. J Urol 2018;200:767-773 https://doi.org/10.1016/j.juro.2018.05.003
  6. Mehralivand S, Bednarova S, Shih JH, Mertan FV, Gaur S, Merino MJ, et al. Prospective evaluation of PI-RADS™ version 2 using the international society of urological pathology prostate cancer grade group system. J Urol 2017;198:583-590 https://doi.org/10.1016/j.juro.2017.03.131
  7. Mertan FV, Greer MD, Shih JH, George AK, Kongnyuy M, Muthigi A, et al. Prospective evaluation of the prostate imaging reporting and data system version 2 for prostate cancer detection. J Urol 2016;196:690-696 https://doi.org/10.1016/j.juro.2016.04.057
  8. Kasivisvanathan V, Rannikko AS, Borghi M, Panebianco V, Mynderse LA, Vaarala MH, et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med 2018;378:1767-1777 https://doi.org/10.1056/NEJMoa1801993
  9. Westphalen AC, McCulloch CE, Anaokar JM, Arora S, Barashi NS, Barentsz JO, et al. Variability of the positive predictive value of PI-RADS for prostate MRI across 26 centers: experience of the society of abdominal radiology prostate cancer disease-focused panel. Radiology 2020;296:76-84 https://doi.org/10.1148/radiol.2020190646
  10. McNeal JE, Redwine EA, Freiha FS, Stamey TA. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am J Surg Pathol 1988;12:897-906 https://doi.org/10.1097/00000478-198812000-00001
  11. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI-RADS prostate imaging - reporting and data system: 2015, version 2. Eur Urol 2016;69:16-40 https://doi.org/10.1016/j.eururo.2015.08.052
  12. Venderink W, Bomers JG, Overduin CG, Padhani AR, de Lauw GR, Sedelaar MJ, et al. Multiparametric magnetic resonance imaging for the detection of clinically significant prostate cancer: what urologists need to know. Part 3: targeted biopsy. Eur Urol 2020;77:481-490 https://doi.org/10.1016/j.eururo.2019.10.009
  13. Pierorazio PM, Walsh PC, Partin AW, Epstein JI. Prognostic Gleason grade grouping: data based on the modified Gleason scoring system. BJU Int 2013;111:753-760 https://doi.org/10.1111/j.1464-410X.2012.11611.x
  14. Wang W, Davis CS, Soong SJ. Comparison of predictive values of two diagnostic tests from the same sample of subjects using weighted least squares. Stat Med 2006;25:2215-2229 https://doi.org/10.1002/sim.2332
  15. Leisenring W, Alonzo T, Pepe MS. Comparisons of predictive values of binary medical diagnostic tests for paired designs. Biometrics 2000;56:345-351 https://doi.org/10.1111/j.0006-341X.2000.00345.x
  16. Jakobsson U, Westergren A. Statistical methods for assessing agreement for ordinal data. Scand J Caring Sci 2005;19:427-431 https://doi.org/10.1111/j.1471-6712.2005.00368.x
  17. Stolk TT, de Jong IJ, Kwee TC, Luiting HB, Mahesh SVK, Doornweerd BHJ, et al. False positives in PIRADS (V2) 3, 4, and 5 lesions: relationship with reader experience and zonal location. Abdom Radiol (NY) 2019;44:1044-1051 https://doi.org/10.1007/s00261-019-01919-2
  18. Woo S, Suh CH, Kim SY, Cho JY, Kim SH. Diagnostic performance of prostate imaging reporting and data system version 2 for detection of prostate cancer: a systematic review and diagnostic meta-analysis. Eur Urol 2017;72:177-188 https://doi.org/10.1016/j.eururo.2017.01.042
  19. Padhani AR, Barentsz J, Villeirs G, Rosenkrantz AB, Margolis DJ, Turkbey B, et al. PI-RADS Steering Committee: the PI-RADS multiparametric MRI and MRI-directed biopsy pathway. Radiology 2019;292:464-474 https://doi.org/10.1148/radiol.2019182946
  20. Venderink W, van Luijtelaar A, Bomers JGR, van der Leest M, Hulsbergen-van de Kaa C, Barentsz JO, et al. Results of targeted biopsy in men with magnetic resonance imaging lesions classified equivocal, likely or highly likely to be clinically significant prostate cancer. Eur Urol 2018;73:353-360 https://doi.org/10.1016/j.eururo.2017.02.021
  21. Bae H, Cho NH, Park SY. PI-RADS version 2: optimal time range for determining positivity of dynamic contrast-enhanced MRI in peripheral zone prostate cancer. Clin Radiol 2019;74:895.e27-895.e34 https://doi.org/10.1016/j.crad.2019.06.014
  22. Tamada T, Kido A, Takeuchi M, Yamamoto A, Miyaji Y, Kanomata N, et al. Comparison of PI-RADS version 2 and PI-RADS version 2.1 for the detection of transition zone prostate cancer. Eur J Radiol 2019;121:108704 https://doi.org/10.1016/j.ejrad.2019.108704
  23. Byun J, Park KJ, Kim MH, Kim JK. Direct comparison of PI-RADS version 2 and 2.1 in transition zone lesions for detection of prostate cancer: preliminary experience. J Magn Reson Imaging 2020;52:577-586 https://doi.org/10.1002/jmri.27080
  24. Chatterjee A, Tokdemir S, Gallan AJ, Yousuf A, Antic T, Karczmar GS, et al. Multiparametric MRI features and pathologic outcome of wedge-shaped lesions in the peripheral zone on T2-weighted images of the prostate. AJR Am J Roentgenol 2019;212:124-129 https://doi.org/10.2214/AJR.18.19742
  25. Rosenkrantz AB, Ginocchio LA, Cornfeld D, Froemming AT, Gupta RT, Turkbey B, et al. Interobserver reproducibility of the PI-RADS version 2 lexicon: a multicenter study of six experienced prostate radiologists. Radiology 2016;280:793-804 https://doi.org/10.1148/radiol.2016152542
  26. Purysko AS, Bittencourt LK, Bullen JA, Mostardeiro TR, Herts BR, Klein EA. Accuracy and interobserver agreement for prostate imaging reporting and data system, version 2, for the characterization of lesions identified on multiparametric MRI of the prostate. AJR Am J Roentgenol 2017;209:339-349 https://doi.org/10.2214/AJR.16.17289
  27. Mussi TC, Yamauchi FI, Tridente CF, Tachibana A, Tonso VM, Recchimuzzi DZ, et al. Interobserver agreement of PI-RADS v. 2 lexicon among radiologists with different levels of experience. J Magn Reson Imaging 2020;51:593-602 https://doi.org/10.1002/jmri.26882
  28. Benndorf M, Hahn F, Kronig M, Jilg CA, Krauss T, Langer M, et al. Diagnostic performance and reproducibility of T2w based and diffusion weighted imaging (DWI) based PI-RADSv2 lexicon descriptors for prostate MRI. Eur J Radiol 2017;93:9-15 https://doi.org/10.1016/j.ejrad.2017.05.015