DOI QR코드

DOI QR Code

Breast Ultrasound Microvascular Imaging and Radiogenomics

  • Ah Young Park (Department of Radiology, Bundang CHA Medical Center, CHA University) ;
  • Bo Kyoung Seo (Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine) ;
  • Mi-Ryung Han (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
  • 투고 : 2020.09.25
  • 심사 : 2020.12.10
  • 발행 : 2021.05.01

초록

Microvascular ultrasound (US) techniques are advanced Doppler techniques that provide high sensitivity and spatial resolution for detailed visualization of low-flow vessels. Microvascular US imaging can be applied to breast lesion evaluation with or without US contrast agents. Microvascular US imaging without a contrast agent uses a sophisticated wall filtering system to selectively obtain low-flow Doppler signals from overlapped artifacts. Microvascular US imaging with second-generation contrast agents amplifies flow signals and makes them last longer, which facilitates hemodynamic evaluation of breast lesions. In this review article, we will introduce various microvascular US techniques, explain their clinical applications in breast cancer diagnosis and radiologic-histopathologic correlation, and provide a summary of a recent radiogenomic study using microvascular US.

키워드

과제정보

We thank Sarah Kwon of the ultrasound division of Canon Medical Systems Korea Co. Ltd. for her assistance with ultrasound physics.

참고문헌

  1. Folkman J. Angiogenesis and breast cancer. J Clin Oncol 1994;12:441-443 https://doi.org/10.1200/JCO.1994.12.3.441
  2. Uzzan B, Nicolas P, Cucherat M, Perret GY. Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res 2004;64:2941-2955 https://doi.org/10.1158/0008-5472.CAN-03-1957
  3. Schroeder RJ, Bostanjoglo M, Rademaker J, Maeurer J, Felix R. Role of power Doppler techniques and ultrasound contrast enhancement in the differential diagnosis of focal breast lesions. Eur Radiol 2003;13:68-79 https://doi.org/10.1007/s00330-002-1413-3
  4. Park AY, Seo BK. Up-to-date Doppler techniques for breast tumor vascularity: superb microvascular imaging and contrast-enhanced ultrasound. Ultrasonography 2018;37:98-106 https://doi.org/10.14366/usg.17043
  5. Yoo J, Je BK, Choo JY. Ultrasonographic demonstration of the tissue microvasculature in children: microvascular ultrasonography versus conventional color Doppler ultrasonography. Korean J Radiol 2020;21:146-158 https://doi.org/10.3348/kjr.2019.0500
  6. Seeing the unseen with superb micro-vascular imaging (SMI). Global.medical.canon Web site. https://global.medical.canon/products/ultrasound/aplio_platinum_imaging03.html. Accessed November 9, 2020
  7. Drudi FM, Cantisani V, Gnecchi M, Malpassini F, Di Leo N, de Felice C. Contrast-enhanced ultrasound examination of the breast: a literature review. Ultraschall Med 2012;33:E1-E7 https://doi.org/10.1055/s-0031-1299408
  8. Park AY, Seo BK, Woo OH, Jung KS, Cho KR, Park EK, et al. The utility of ultrasound superb microvascular imaging for evaluation of breast tumour vascularity: comparison with colour and power Doppler imaging regarding diagnostic performance. Clin Radiol 2018;73:304-311 https://doi.org/10.1016/j.crad.2017.10.006
  9. Ma Y, Li G, Li J, Ren WD. The diagnostic value of superb microvascular imaging (SMI) in detecting blood flow signals of breast lesions: a preliminary study comparing SMI to color Doppler flow imaging. Medicine (Baltimore) 2015;94:e1502
  10. Zhan J, Diao XH, Jin JM, Chen L, Chen Y. Superb microvascular imaging-a new vascular detecting ultrasonographic technique for avascular breast masses: a preliminary study. Eur J Radiol 2016;85:915-921 https://doi.org/10.1016/j.ejrad.2015.12.011
  11. Yongfeng Z, Ping Z, Wengang L, Yang S, Shuangming T. Application of a novel microvascular imaging technique in breast lesion evaluation. Ultrasound Med Biol 2016;42:2097-2105 https://doi.org/10.1016/j.ultrasmedbio.2016.05.010
  12. Park AY, Kwon M, Woo OH, Cho KR, Park EK, Cha SH, et al. A prospective study on the value of ultrasound microflow assessment to distinguish malignant from benign solid breast masses: association between ultrasound parameters and histologic microvessel densities. Korean J Radiol 2019;20:759-772 https://doi.org/10.3348/kjr.2018.0515
  13. Zhang XY, Zhang L, Li N, Zhu QL, Li JC, Sun Q, et al. Vascular index measured by smart 3-D superb microvascular imaging can help to differentiate malignant and benign breast lesion. Cancer Manag Res 2019;11:5481-5487 https://doi.org/10.2147/CMAR.S203376
  14. Chae EY, Yoon GY, Cha JH, Shin HJ, Choi WJ, Kim HH. Added value of the vascular index on superb microvascular imaging for the evaluation of breast masses: comparison with grayscale ultrasound. J Ultrasound Med 2020 Aug [Epub]. https://doi.org/10.1002/jum.15441
  15. Kim S, Lee HJ, Ko KH, Park AY, Koh J, Jung HK. New Doppler imaging technique for assessing angiogenesis in breast tumors: correlation with immunohistochemically analyzed microvessels density. Acta Radiol 2018;59:1414-1421 https://doi.org/10.1177/0284185118769690
  16. Kim ES, Seo BK, Park EK, Woo OH, Jung K, Cho KR, et al. Significance of microvascular evaluation of ductal lesions on breast ultrasonography: influence on diagnostic performance. Clin Imaging 2018;51:252-259 https://doi.org/10.1016/j.clinimag.2018.05.024
  17. Bakdik S, Arslan S, Oncu F, Durmaz MS, Altunkeser A, Eryilmaz MA, et al. Effectiveness of superb microvascular imaging for the differentiation of intraductal breast lesions. Med Ultrason 2018;20:306-312 https://doi.org/10.11152/mu-1433
  18. Du J, Wang L, Wan CF, Hua J, Fang H, Chen J, et al. Differentiating benign from malignant solid breast lesions: combined utility of conventional ultrasound and contrast-enhanced ultrasound in comparison with magnetic resonance imaging. Eur J Radiol 2012;81:3890-3899 https://doi.org/10.1016/j.ejrad.2012.09.004
  19. Miyamoto Y, Ito T, Takada E, Omoto K, Hirai T, Moriyasu F. Efficacy of sonazoid (perflubutane) for contrast-enhanced ultrasound in the differentiation of focal breast lesions: phase 3 multicenter clinical trial. AJR Am J Roentgenol 2014;202:W400-W407 https://doi.org/10.2214/AJR.12.10518
  20. Wan C, Du J, Fang H, Li F, Wang L. Evaluation of breast lesions by contrast enhanced ultrasound: qualitative and quantitative analysis. Eur J Radiol 2012;81:e444-e450 https://doi.org/10.1016/j.ejrad.2011.03.094
  21. Zhao YX, Liu S, Hu YB, Ge YY, Lv DM. Diagnostic and prognostic values of contrast-enhanced ultrasound in breast cancer: a retrospective study. Onco Targets Ther 2017;10:1123-1129 https://doi.org/10.2147/OTT.S124134
  22. Hu Q, Wang XY, Zhu SY, Kang LK, Xiao YJ, Zheng HY. Meta-analysis of contrast-enhanced ultrasound for the differentiation of benign and malignant breast lesions. Acta Radiol 2015;56:25-33 https://doi.org/10.1177/0284185113517115
  23. Li Q, Hu M, Chen Z, Li C, Zhang X, Song Y, et al. Meta-analysis: contrast-enhanced ultrasound versus conventional ultrasound for differentiation of benign and malignant breast lesions. Ultrasound Med Biol 2018;44:919-929 https://doi.org/10.1016/j.ultrasmedbio.2018.01.022
  24. Ma Y, Li J, Ren W, Deng L. Correlation between superb microvascular imaging and pathological microvessel density in breast tumors. Xiangya Med 2016;1:30
  25. Wan CF, Du J, Fang H, Li FH, Zhu JS, Liu Q. Enhancement patterns and parameters of breast cancers at contrast-enhanced US: correlation with prognostic factors. Radiology 2012;262:450-459 https://doi.org/10.1148/radiol.11110789
  26. Mori N, Mugikura S, Takahashi S, Ito K, Takasawa C, Li L, et al. Quantitative analysis of contrast-enhanced ultrasound imaging in invasive breast cancer: a novel technique to obtain histopathologic information of microvessel density. Ultrasound Med Biol 2017;43:607-614 https://doi.org/10.1016/j.ultrasmedbio.2016.11.009
  27. Jung HK, Park AY, Ko KH, Koh J. Comparison of the diagnostic performance of power Doppler ultrasound and a new microvascular Doppler ultrasound technique (AngioPLUS) for differentiating benign and malignant breast masses. J Ultrasound Med 2018;37:2689-2698 https://doi.org/10.1002/jum.14602
  28. Bae JS, Lee JM, Jeon SK, Jang S. Comparison of MicroFlow Imaging with color and power Doppler imaging for detecting and characterizing blood flow signals in hepatocellular carcinoma. Ultrasonography 2020;39:85-93 https://doi.org/10.14366/usg.19033
  29. Park AY, Seo BK, Cha SH, Yeom SK, Lee SW, Chung HH. An innovative ultrasound technique for evaluation of tumor vascularity in breast cancers: superb micro-vascular imaging. J Breast Cancer 2016;19:210-213 https://doi.org/10.4048/jbc.2016.19.2.210
  30. Zhong L, Wang C. Diagnostic accuracy of ultrasound superb microvascular imaging for breast tumor: a meta-analysis. Med Ultrason 2020;22:313-318 https://doi.org/10.11152/mu-2460
  31. Tek C, Oztekin PS, Celepli P, Ucar F, Kos,ar PN. Using the superb microvascular imaging method in the distinction of intraductal papilloma and duct ectasia with secretion. J Ultrasound Med 2020 Jul [Epub]. https://doi.org/10.1002/jum.15396
  32. Son MJ, Kim S, Jung HK, Ko KH, Koh JE, Park AY. Can ultrasonographic vascular and elastographic features of invasive ductal breast carcinoma predict histologic aggressiveness? Acad Radiol 2020;27:487-496 https://doi.org/10.1016/j.acra.2019.06.009
  33. Chung YE, Kim KW. Contrast-enhanced ultrasonography: advance and current status in abdominal imaging. Ultrasonography 2015;34:3-18 https://doi.org/10.14366/usg.14034
  34. Kedar RP, Cosgrove D, McCready VR, Bamber JC, Carter ER. Microbubble contrast agent for color Doppler US: effect on breast masses. Work in progress. Radiology 1996;198:679-686 https://doi.org/10.1148/radiology.198.3.8628854
  35. Xiao XY, Chen X, Guan XF, Wu H, Qin W, Luo BM. Superb microvascular imaging in diagnosis of breast lesions: a comparative study with contrast-enhanced ultrasonographic microvascular imaging. Br J Radiol 2016;89:20160546
  36. Pinker K, Chin J, Melsaether AN, Morris EA, Moy L. Precision medicine and radiogenomics in breast cancer: new approaches toward diagnosis and treatment. Radiology 2018;287:732-747 https://doi.org/10.1148/radiol.2018172171
  37. Park AY, Han MR, Park KH, Kim JS, Son GS, Lee HY, et al. Radiogenomic analysis of breast cancer by using B-mode and vascular US and RNA sequencing. Radiology 2020;295:24-34 https://doi.org/10.1148/radiol.2020191368
  38. Talukder AH, Meng Q, Kumar R. CRIPak, a novel endogenous Pak1 inhibitor. Oncogene 2006;25:1311-1319 https://doi.org/10.1038/sj.onc.1209172
  39. Yin S, Xu L, Bonfil RD, Banerjee S, Sarkar FH, Sethi S, et al. Tumor-initiating cells and FZD8 play a major role in drug resistance in triple-negative breast cancer. Mol Cancer Ther 2013;12:491-498 https://doi.org/10.1158/1535-7163.MCT-12-1090
  40. Dai DN, Li Y, Chen B, Du Y, Li SB, Lu SX, et al. Elevated expression of CST1 promotes breast cancer progression and predicts a poor prognosis. J Mol Med (Berl) 2017;95:873-886 https://doi.org/10.1007/s00109-017-1537-1
  41. Salmans ML, Zhao F, Andersen B. The estrogen-regulated anterior gradient 2 (AGR2) protein in breast cancer: a potential drug target and biomarker. Breast Cancer Res 2013;15:204
  42. Wang X, Zhu J. Mir-1307 regulates cisplatin resistance by targeting Mdm4 in breast cancer expressing wild type P53. Thorac Cancer 2018;9:676-683 https://doi.org/10.1111/1759-7714.12607
  43. Nayak SR, Harrington E, Boone D, Hartmaier R, Chen J, Pathiraja TN, et al. A role for histone H2B variants in endocrine-resistant breast cancer. Horm Cancer 2015;6:214-224 https://doi.org/10.1007/s12672-015-0230-5
  44. He J, Mai J, Li Y, Chen L, Xu H, Zhu X, et al. miR-597 inhibits breast cancer cell proliferation, migration and invasion through FOSL2. Oncol Rep 2017;37:2672-2678 https://doi.org/10.3892/or.2017.5558
  45. Cunningham F, Achuthan P, Akanni W, Allen J, Amode MR, Armean IM, et al. Ensembl 2019. Nucleic Acids Res 2019;47:D745-D751 https://doi.org/10.1093/nar/gky1113