참고문헌
- Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med 2011;32:605-644 https://doi.org/10.1016/j.ccm.2011.09.001
- National Lung Screening Trial Research Team; Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011;365:395-409 https://doi.org/10.1056/NEJMoa1102873
- National Lung Screening Trial Research Team; Church TR, Black WC, Aberle DR, Berg CD, Clingan KL, et al. Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med 2013;368:1980-1991 https://doi.org/10.1056/NEJMoa1209120
- Diederich S, Wormanns D, Semik M, Thomas M, Lenzen H, Roos N, et al. Screening for early lung cancer with low-dose spiral CT: prevalence in 817 asymptomatic smokers. Radiology 2002;222:773-781 https://doi.org/10.1148/radiol.2223010490
- Ohno Y, Koyama H, Seki S, Kishida Y, Yoshikawa T. Radiation dose reduction techniques for chest CT: principles and clinical results. Eur J Radiol 2019;111:93-103 https://doi.org/10.1016/j.ejrad.2018.12.017
- Geyer LL, Schoepf UJ, Meinel FG, Nance JW Jr, Bastarrika G, Leipsic JA, et al. State of the art: iterative CT reconstruction techniques. Radiology 2015;276:339-357 https://doi.org/10.1148/radiol.2015132766
- Padole A, Ali Khawaja RD, Kalra MK, Singh S. CT radiation dose and iterative reconstruction techniques. AJR Am J Roentgenol 2015;204:W384-W392 https://doi.org/10.2214/AJR.14.13241
- Akagi M, Nakamura Y, Higaki T, Narita K, Honda Y, Zhou J, et al. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol 2019;29:6163-6171 https://doi.org/10.1007/s00330-019-06170-3
- Benz DC, Benetos G, Rampidis G, von Felten E, Bakula A, Sustar A, et al. Validation of deep-learning image reconstruction for coronary computed tomography angiography: impact on noise, image quality and diagnostic accuracy. J Cardiovasc Comput Tomogr 2020 Jan 13 [Epub]. https://doi.org/10.1016/j.jcct.2020.01.002
- Higaki T, Nakamura Y, Tatsugami F, Nakaura T, Awai K. Improvement of image quality at CT and MRI using deep learning. Jpn J Radiol 2019;37:73-80 https://doi.org/10.1007/s11604-018-0796-2
- Liu J, Zhang Y, Zhao Q, Lv T, Wu W, Cai N, et al. Deep iterative reconstruction estimation (DIRE): approximate iterative reconstruction estimation for low dose CT imaging. Phys Med Biol 2019;64:135007
- Singh R, Digumarthy SR, Muse VV, Kambadakone AR, Blake MA, Tabari A, et al. Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT. AJR Am J Roentgenol 2020;214:566-573 https://doi.org/10.2214/AJR.19.21809
- Tatsugami F, Higaki T, Nakamura Y, Yu Z, Zhou J, Lu Y, et al. Deep learning-based image restoration algorithm for coronary CT angiography. Eur Radiol 2019;29:5322-5329 https://doi.org/10.1007/s00330-019-06183-y
- Liu P, Wang M, Wang Y, Yu M, Wang Y, Liu Z, et al. Impact of deep learning-based optimization algorithm on image quality of low-dose coronary CT angiography with noise reduction: a prospective study. Acad Radiol 2019 Dec 18 [Epub]. https://doi.org/10.1016/j.acra.2019.11.010
- Jensen CT, Liu X, Tamm EP, Chandler AG, Sun J, Morani AC, et al. Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience. AJR Am J Roentgenol 2020;215:50-57 https://doi.org/10.2214/AJR.19.22332
- Shin YJ, Chang W, Ye JC, Kang E, Oh DY, Lee YJ, et al. Low-dose abdominal CT using a deep learning-based denoising algorithm: a comparison with ct reconstructed with filtered back projection or iterative reconstruction algorithm. Korean J Radiol 2020;21:356-364 https://doi.org/10.3348/kjr.2019.0413
- Hsieh J, Liu E, Nett B, Tang J, Thibault JB, Sahney S. A new era of image reconstruction: TrueFidelityTM: technical white paper on deep learning image reconstruction. Available at: https://pdfs.semanticscholar.org/d0f8/e1e8868e9f8ed22ad5972420139551552e91.pdf?_ga=2.233526110.1531411842.1594709320-2066918258.1594709320. Accessed January 13, 2020
- Trattner S, Halliburton S, Thompson CM, Xu Y, Chelliah A, Jambawalikar SR, et al. Cardiac-specific conversion factors to estimate radiation effective dose from dose-length product in computed tomography. JACC Cardiovasc Imaging 2018;11:64-74 https://doi.org/10.1016/j.jcmg.2017.06.006
- Christner JA, Braun NN, Jacobsen MC, Carter RE, Kofler JM, McCollough CH. Size-specific dose estimates for adult patients at CT of the torso. Radiology 2012;265:841-847 https://doi.org/10.1148/radiol.12112365
- American Association of Physicists in Medicine. Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations. College Park, MD: American Association of Physicists in Medicine, 2011:204
- Lin S, Lin M, Lau KK. Image quality comparison between model-based iterative reconstruction and adaptive statistical iterative reconstruction chest computed tomography in cystic fibrosis patients. J Med Imaging Radiat Oncol 2019;63:602-609 https://doi.org/10.1111/1754-9485.12895
- Winklehner A, Karlo C, Puippe G, Schmidt B, Flohr T, Goetti R, et al. Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur Radiol 2011;21:2521-2526 https://doi.org/10.1007/s00330-011-2227-y
- Kuo Y, Lin YY, Lee RC, Lin CJ, Chiou YY, Guo WY. Comparison of image quality from filtered back projection, statistical iterative reconstruction, and model-based iterative reconstruction algorithms in abdominal computed tomography. Medicine (Baltimore) 2016;95:e4456
- Gulliksrud K, Stokke C, Martinsen AC. How to measure CT image quality: variations in CT-numbers, uniformity and low contrast resolution for a CT quality assurance phantom. Phys Med 2014;30:521-526 https://doi.org/10.1016/j.ejmp.2014.01.006
- Svanholm H, Starklint H, Gundersen HJ, Fabricius J, Barlebo H, Olsen S. Reproducibility of histomorphologic diagnoses with special reference to the kappa statistic. APMIS 1989;97:689-698 https://doi.org/10.1111/j.1699-0463.1989.tb00464.x
- Bushberg JT, Seibert A, Boone JM, Leidholdt EM. The essential physics of medical imaging. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins, 2012
- Rose A. Quantum effects in human vision. Adv Biol Med Phys 1957;5:211-242 https://doi.org/10.1016/B978-1-4832-3111-2.50009-2
- Faber J, Fonseca LM. How sample size influences research outcomes. Dental Press J Orthod 2014;19:27-29 https://doi.org/10.1590/2176-9451.19.4.027-029.ebo