Acknowledgement
The authors thank the radiographers in our departments for their assistance in the experimental studies as well as data analysis.
References
- Lalwani N, Prasad SR, Vikram R, Shanbhogue AK, Huettner PC, Fasih N. Histologic, molecular, and cytogenetic features of ovarian cancers: implications for diagnosis and treatment. Radiographics 2011;31:625-646 https://doi.org/10.1148/rg.313105066
- Kurman RJ, Carcangiu ML, Herrington CS, Young RH. WHO classification of tumors of female reproductive organs, 4th ed. Lyon: International Agency for Research on Cancer, 2014
- National Comprehensive Cancer Network. Ovarian cancer including fallopian tube cancer and primary peritoneal cancer (Version 1.2020). Philadelphia: National Comprehensive Cancer Network, 2020
- Bentivegna E, Gouy S, Maulard A, Pautier P, Leary A, Colombo N, et al. Fertility-sparing surgery in epithelial ovarian cancer: a systematic review of oncological issues. Ann Oncol 2016;27:1994-2004 https://doi.org/10.1093/annonc/mdw311
- Vasconcelos I, de Sousa Mendes M. Conservative surgery in ovarian borderline tumours: a meta-analysis with emphasis on recurrence risk. Eur J Cancer 2015;51:620-631 https://doi.org/10.1016/j.ejca.2015.01.004
- Naqvi J, Nagaraju E, Ahmad S. MRI appearances of pure epithelial papillary serous borderline ovarian tumours. Clin Radiol 2015;70:424-432 https://doi.org/10.1016/j.crad.2014.11.005
- Sherman ME, Mink PJ, Curtis R, Cote TR, Brooks S, Hartge P, et al. Survival among women with borderline ovarian tumors and ovarian carcinoma: a population-based analysis. Cancer 2004;100:1045-1052 https://doi.org/10.1002/cncr.20080
- Bazot M, Haouy D, Darai E, Cortez A, Dechoux-Vodovar S, Thomassin-Naggara I. Is MRI a useful tool to distinguish between serous and mucinous borderline ovarian tumours? Clin Radiol 2013;68:e1-e8 https://doi.org/10.1016/j.crad.2012.08.021
- Bent CL, Sahdev A, Rockall AG, Singh N, Sohaib SA, Reznek RH. MRI appearances of borderline ovarian tumours. Clin Radiol 2009;64:430-438 https://doi.org/10.1016/j.crad.2008.09.011
- Takemori M, Nishimura R, Hasegawa K. Clinical evaluation of MRI in the diagnosis of borderline ovarian tumors. Acta Obstet Gynecol Scand 2002;81:157-161 https://doi.org/10.1034/j.1600-0412.2002.810212.x
- deSouza NM, O'Neill R, McIndoe GA, Dina R, Soutter WP. Borderline tumors of the ovary: CT and MRI features and tumor markers in differentiation from stage I disease. AJR Am J Roentgenol 2005;184:999-1003 https://doi.org/10.2214/ajr.184.3.01840999
- Thomassin-Naggara I, Darai E, Cuenod CA, Rouzier R, Callard P, Bazot M. Dynamic contrast-enhanced magnetic resonance imaging: a useful tool for characterizing ovarian epithelial tumors. J Magn Reson Imaging 2008;28:111-120 https://doi.org/10.1002/jmri.21377
- Zhao SH, Qiang JW, Zhang GF, Ma FH, Cai SQ, Li HM, et al. Diffusion-weighted MR imaging for differentiating borderline from malignant epithelial tumours of the ovary: pathological correlation. Eur Radiol 2014;24:2292-2299 https://doi.org/10.1007/s00330-014-3236-4
- Lu J, Pi S, Ma FH, Zhao SH, Li HM, Cai SL, et al. Value of normalized apparent diffusion coefficients in differentiating between borderline and malignant epithelial ovarian tumors. Eur J Radiol 2019;118:44-50 https://doi.org/10.1016/j.ejrad.2019.06.020
- Han X, Sun M, Wang M, Fan R, Chen D, Xie L, et al. The enhanced T2 star weighted angiography (ESWAN) value for differentiating borderline from malignant epithelial ovarian tumors. Eur J Radiol 2019;118:187-193 https://doi.org/10.1016/j.ejrad.2019.07.011
- Incoronato M, Aiello M, Infante T, Cavaliere C, Grimaldi AM, Mirabelli P, et al. Radiogenomic analysis of oncological data: a technical survey. Int J Mol Sci 2017;18:805
- Ng F, Kozarski R, Ganeshan B, Goh V. Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis? Eur J Radiol 2013;82:342-348 https://doi.org/10.1016/j.ejrad.2012.10.023
- Denewar FA, Takeuchi M, Urano M, Kamishima Y, Kawai T, Takahashi N, et al. Multiparametric MRI for differentiation of borderline ovarian tumors from stage I malignant epithelial ovarian tumors using multivariate logistic regression analysis. Eur J Radiol 2017;91:116-123 https://doi.org/10.1016/j.ejrad.2017.04.001
- Li YA, Qiang JW, Ma FH, Li HM, Zhao SH. MRI features and score for differentiating borderline from malignant epithelial ovarian tumors. Eur J Radiol 2018;98:136-142 https://doi.org/10.1016/j.ejrad.2017.11.014
- Thomassin-Naggara I, Aubert E, Rockall A, Jalaguier-Coudray A, Rouzier R, Darai E, et al. Adnexal masses: development and preliminary validation of an MR imaging scoring system. Radiology 2013;267:432-443 https://doi.org/10.1148/radiol.13121161
- Ma FH, Zhao SH, Qiang JW, Zhang GF, Wang XZ, Wang L. MRI appearances of mucinous borderline ovarian tumors: pathological correlation. J Magn Reson Imaging 2014;40:745-751 https://doi.org/10.1002/jmri.24408
- Szczypin'ski PM, Strzelecki M, Materka A, Klepaczko A. MaZda--a software package for image texture analysis. Comput Methods Programs Biomed 2009;94:66-76 https://doi.org/10.1016/j.cmpb.2008.08.005
- Strzelecki M, Szczypinski P, Materka A, Klepaczko A. A software tool for automatic classification and segmentation of 2D/3D medical images. Nucl Instrum Methods Phys Res A 2013;702:137-140 https://doi.org/10.1016/j.nima.2012.09.006
- Szczypinski PM, Strzelecki M, Materka A. MaZda-A software for texture analysis. 2007 international symposium on information technology convergence (ISITC 2007);2007 November 23-24; Jeonju, Korea
- Tourassi GD, Frederick ED, Markey MK, Floyd CE Jr. Application of the mutual information criterion for feature selection in computer-aided diagnosis. Med Phys 2001;28:2394-2402 https://doi.org/10.1118/1.1418724
- Kurata Y, Kido A, Moribata Y, Kameyama K, Himoto Y, Minamiguchi S, et al. Diagnostic performance of MR imaging findings and quantitative values in the differentiation of seromucinous borderline tumour from endometriosis-related malignant ovarian tumour. Eur Radiol 2017;27:1695-1703 https://doi.org/10.1007/s00330-016-4533-x
- Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a nomogram for cancer prognosis. J Clin Oncol 2008;26:1364-1370 https://doi.org/10.1200/JCO.2007.12.9791