DOI QR코드

DOI QR Code

Recent advances of pectin-based biomedical application: potential of marine pectin

  • Kim, Min-Sung (Department of Biomedical Engineering and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University) ;
  • Chandika, Pathum (Department of Biomedical Engineering and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University) ;
  • Jung, Won-Kyo (Department of Biomedical Engineering and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University)
  • Received : 2021.05.16
  • Accepted : 2021.06.08
  • Published : 2021.06.30

Abstract

Pectin is a natural polysaccharide and biopolymer that serves as a structural component of plant tissues' primary cell walls. Pectin is primarily composed of D-galacturonic acid linked by α-1, 4-glycosidic linkage and is further classified by the ratio of esterified galacturonic acid groups known as degree of esterification (DE). Pectin that contains more than half of its carboxylate units as methyl esters is known as a high methyl (HM) ester. Conversely, pectin that has less than half of its carboxylate units as methyl esters is known as a low methyl (LM) ester. Pectin has various bioactive properties, including anticancer, anti-inflammatory, antioxidant, antidiabetic, anticholesterol, antitumoral, and chemopreventive properties. Moreover, pectin is a useful biopolymer in biomedical applications. Biomedical engineering, which is founded on research aimed to improve the quality of life using new materials and technologies, is typically classified according to the use of hydrogels, nanofiber mats, and nanoparticles. This paper reviews the progress of recent research into pectin-based biomedical applications and the potential future biomedical applications of marine-derived pectin.

Keywords

Acknowledgement

This work was supported by the Pukyong National University Research Fund 2019.

References

  1. Steiner, T. 2003. C-H⋯ O hydrogen bonding in crystals. Crystallogr. Rev. 9, 177-228 https://doi.org/10.1080/08893110310001621772
  2. Perez-Castineira, J. 2020, 3 Carbohydrates, In: Chemistry and Biochemistry of Food, De Gruyter. p. 25-78.
  3. Sood, A., Gupta, A., and Agrawal, G. 2021. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carbohydr. Polym. Technol. Appl. 2, 100067
  4. Agostoni, M., Hangasky, J.A., and Marletta, M.A. 2017. Physiological and molecular understanding of bacterial polysaccharide monooxygenases. Microbiol. Mol. Biol. Rev. 81.
  5. Muzzarelli, R.A., Boudrant, J., Meyer, D., Manno, N., DeMarchis, M., and Paoletti, M.G. 2012. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr. Polym. 87, 995-1012 https://doi.org/10.1016/j.carbpol.2011.09.063
  6. Thakur, B.R., Singh, R.K., Handa, A.K., and Rao, M. 1997. Chemistry and uses of pectin-a review. Crit. Rev. Food. Sci. Nutr. 37, 47-73 https://doi.org/10.1080/10408399709527767
  7. Mugampoza, D., Gafuma, S., Kyosaba, P., and Namakajjo, R. 2020. Characterization of pectin from pulp and peel of Ugandan cooking bananas at different stages of ripening. J. Food Res. 9, 67-77 https://doi.org/10.5539/jfr.v9n5p67
  8. Conrad, C.M. 1926. A biochemical study of the insoluble pectic substances in vegetables. Am. J. Bot. 13, 531-547 https://doi.org/10.2307/2435283
  9. Additives, E.P.o.F., Food, N.S.a.t., Mortensen, A., Aguilar, F., Crebelli, R., Di Domenico, A., Dusemund, B., Frutos, M.J., Galtier, P., Gott, D., and Gundert-Remy, U. 2017. Re-evaluation of pectin (E 440i) and amidated pectin (E 440ii) as food additives. EFSA Journal. 15, e04866
  10. Wang, R., Liang, R., Dai, T.-t., Chen, J., Shuai, X., and Liu, C. 2019. Pectin-based adsorbents for heavy metalions: A review. Trends Food Sci. Technol. 91, 318-329
  11. Xu, S. Y., Liu, J. P., Huang, X., Du, L. P., Shi, F. L., Dong, R., Huang, W-T., Zheng, K., Liu, Y., and Cheong, K-L. 2018. Ultrasonic-microwave assisted extraction, characterization and biological activity of pectin from jackfruit peel. LWT. 90, p. 577-582. https://doi.org/10.1016/j.lwt.2018.01.007
  12. El-Nawawi, S. and Heikal, Y. 1995. Production of a low ester pectin by de-esterification of high ester citrus pectin. Carbohydr. Polym. 27, 191-195 https://doi.org/10.1016/0144-8617(95)00051-8
  13. Kim, Y., Kim, Y. S., Yoo, S. H., and Kim, K. O. 2010. Molecular differences of low methoxy pectins induced by pectin methyl esterase I: Effects on texture, release and perception of aroma in gel systems. Food Chemistry. 123(2), p. 451-455.
  14. Sriamornsak, P., 2003. Chemistry of pectin and its pharmaceutical uses: A review. Silpakorn University International Journal, 3(1-2): p. 206-228.
  15. Leclere, L., Van Cutsem, P., and Michiels, C. 2013. Anticancer activities of pH-or heat-modified pectin. FRONT PHARMACOL. 4, 128
  16. Zhang, W., Xu, P., and Zhang, H. 2015. Pectin in cancer therapy: A review. Trends Food Sci. Technol. 44, 258-271 https://doi.org/10.1016/j.tifs.2015.04.001
  17. Markov, P., Popov, S., Nikitina, I., Ovodova, R., and Ovodov, Y.S. 2011. Anti-inflammatory activity of pectins and their galacturonan backbone. Russ. J. Bioorganic Chem. 37, 817-821 https://doi.org/10.1134/S1068162011070132
  18. Ogutu, F.O. and Mu, T.-H. 2017. Ultrasonic degradation of sweet potato pectin and its antioxidant activity. Ultras on. Sonochem. 38, 726-734 https://doi.org/10.1016/j.ultsonch.2016.08.014
  19. Liu, Y., Dong, M., Yang, Z., and Pan, S. 2016. Anti-diabetic effect of citrus pectin in diabetic rats and potential mechanism via PI3K/Akt signaling pathway. Int. J. Biol. Macromol. 89, 484-488 https://doi.org/10.1016/j.ijbiomac.2016.05.015
  20. Hu, H., Zhang, S., Liu, F., Zhang, P., Muhammad, Z., and Pan, S. 2019. Role of the gut microbiota and their metabolites in modulating the cholesterol-lowering effects of citrus pectin oligosaccharides in C57BL/6 mice. J. Agric. Food Chem. 67, 11922-11930 https://doi.org/10.1021/acs.jafc.9b03731
  21. Munarin, F., Tanzi, M.C., and Petrini, P. 2012. Advances in biomedical applications of pectin gels. Int. J. Biol. Macromol. 51, 681-689 https://doi.org/10.1016/j.ijbiomac.2012.07.002
  22. Yang, R.-f., Zhao, C., Chen, X., Chan, S.-w., and Wu, J.-y. 2015. Chemical properties and bioactivities of Goji (Lycium barbarum) polysaccharides extracted by different methods. J. Funct. Foods. 17, 903-909 https://doi.org/10.1016/j.jff.2015.06.045
  23. Puri, M., Sharma, D., and Barrow, C.J. 2012. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 30, 37-44 https://doi.org/10.1016/j.tibtech.2011.06.014
  24. Picot-Allain, M.C.N., Ramasawmy, B., and Emmambux, M.N. 2020. Extraction, characterisation, and application of pectin from tropical and sub-tropical fruits: a review. Food Rev. Int. 1-31
  25. Shekharam, K.M., Venkataraman, L., and Salimath, P. 1987. Carbohydrate composition and characterization of two unusual sugars from the blue green alga Spirulina platensis. Phytochemistry. 26, 2267-2269 https://doi.org/10.1016/S0031-9422(00)84698-1
  26. Cheng, Y.S., Labavitch, J., and VanderGheynst, J. 2015. Elevated CO 2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella. Lett. Appl. Microbiol. 60, 1-7 https://doi.org/10.1111/lam.12320
  27. 이경아, 최운용, 박건후, 정윤식, 이연지, and 강도형. 2020. 해양조류 14 종 유래 Marine Pectin 의 추출 및 이의 함량과 항산화 활성에 관한 연구. J. Korean. Soc. Food. Sci. Nutr. 49, 677-685 https://doi.org/10.3746/jkfn.2020.49.7.677
  28. Edirisinghe, S., Dananjaya, S., Nikapitiya, C., Liyanage, T., Lee, K.-A., Oh, C., Kang, D.-H., and De Zoysa, M. 2019. Novel pectin isolated from Spirulina maxima enhances the disease resistance and immune responses in zebrafish against Edwardsiella piscicida and Aeromonas hydrophila. Fish Shellfish Immunol. 94, 558-565 https://doi.org/10.1016/j.fsi.2019.09.054
  29. Chandrarathna, H., Liyanage, T., Edirisinghe, S., Dananjaya, S., Thulshan, E., Nikapitiya, C., Oh, C., Kang, D.-H., and De Zoysa, M. 2020. Marine microalgae, Spirulina maxima-derived modified pectin and modified pectin nanoparticles modulate the gut microbiota and trigger immune responses in Mice. Mar. Drugs. 18, 175 https://doi.org/10.3390/md18030175
  30. Edirisinghe, S., Rajapaksha, D., Nikapitiya, C., Oh, C., Lee, K.-A., Kang, D.-H., and De Zoysa, M. 2020. Spirulina maxima derived marine pectin promotes the in vitro and in vivo regeneration and wound healing in zebrafish. Fish Shellfish Immunol. 107, 414-425 https://doi.org/10.1016/j.fsi.2020.10.008
  31. Rajapaksha, D.C., Edirisinghe, S.L., Nikapitiya, C., Dananjaya, S., Kwun, H.-J., Kim, C.-H., Oh, C., Kang, D.-H., and De Zoysa, M. 2020. Spirulina maxima Derived Pectin Nanoparticles Enhance the Immunomodulation, Stress Tolerance, and Wound Healing in Zebrafish. Mar. Drugs. 18, 556 https://doi.org/10.3390/md18110556
  32. Domozych, D.S., Sorensen, I., Popper, Z.A., Ochs, J., Andreas, A., Fangel, J.U., Pielach, A., Sacks, C., Brechka, H., and Ruisi-Besares, P. 2014. Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum. Plant Physiol. 165, 105-118 https://doi.org/10.1104/pp.114.236257
  33. Eder, M. and Lutz-Meindl, U. 2010. Analyses and localization of pectin-like carbohydrates in cell wall and mucilage of the green alga Netrium digitus. Protoplasma. 243, 25-38 https://doi.org/10.1007/s00709-009-0040-0
  34. Gasparyan, A.Y. and Banach, M. 2009. A medium of science communication in our times. Arch. Med. Sci. 5, 1
  35. Sharma, G., Thakur, B., Naushad, M., Kumar, A., Stadler, F.J., Alfadul, S.M., and Mola, G.T. 2018. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environ. Chem. Lett. 16, 113-146 https://doi.org/10.1007/s10311-017-0671-x
  36. Islam, S., Bhuiyan, M.R., and Islam, M. 2017. Chitin and chitosan: structure, properties and applications in bio medical engineering. J. POLYM. ENVIRON. 25, 854-866 https://doi.org/10.1007/s10924-016-0865-5
  37. Saghazadeh, S., Rinoldi, C., Schot, M., Kashaf, S.S., Sharifi, F., Jalilian, E., Nuutila, K., Giatsidis, G., Mostafalu, P., and Derakhshandeh, H. 2018. Drug delivery systems and materials for wound healing applications. Adv. Drug Del. Rev. 127, 138-166 https://doi.org/10.1016/j.addr.2018.04.008
  38. Rodoplu, S., Celik, B.E., Kocaaga, B., Ozturk, C., Batirel, S., Turan, D., and Guner, F.S. 2021. Dual effect of procaine-loaded pectin hydrogels: pain management and in vitro wound healing. Polymer Bulletin. 78, 2227-2250 https://doi.org/10.1007/s00289-020-03210-7
  39. Mahmoud, M.E. and Mohamed, A.K. 2020. Novel derived pectin hydrogel from mandarin peel based metal-organic frameworks composite for enhanced Cr (VI) and Pb (II) ions removal. Int. J. Biol. Macromol. 164, 920-931 https://doi.org/10.1016/j.ijbiomac.2020.07.090
  40. Guner, O., Kocaaga, B., Batirel, S., Kurkcuoglu, O., and Guner, F. 2020. 2-Thiobarbituric acid addition improves structural integrity and controlled drug delivery of biocompatible pectin hydrogels. INT. J. POLYM. MATER. 1-9
  41. Markov, P.A., Khramova, D.S., Shumikhin, K.V., Nikitina, I.R., Beloserov, V.S., Martinson, E.A., Litvinets, S.G., and Popov, S.V. 2019. Mechanical properties of the pectin hydrogels and inflammation response to their subcutaneous implantation. J. Biomed. Mater. Res. A. 107, 2088-2098 https://doi.org/10.1002/jbm.a.36721
  42. Sarioglu, E., Arabacioglu Kocaaga, B., Turan, D., Batirel, S., and Guner, F.S. 2019. Theophylline-loaded pectin-based hydrogels. II. Effect of concentration of initial pectin solution, crosslinker type and cation concentration of external solution on drug release profile. J. Appl. Polym. Sci. 136, 48155 https://doi.org/10.1002/app.48155
  43. Markov, P.A., Krachkovsky, N.S., Durnev, E.A., Martinson, E.A., Litvinets, S.G., and Popov, S.V. 2017. Mechanical properties, structure, bioadhesion, and biocompatibility of pectin hydrogels. J. Biomed. Mater. Res. A. 105, 2572-2581 https://doi.org/10.1002/jbm.a.36116
  44. Goel, H., Gupta, N., Santhiya, D., Dey, N., Bohidar, H.B., and Bhattacharya, A. 2021. Bioactivity reinforced surface patch bound collagen-pectin hydrogel. Int. J. Biol. Macromol. 174, 240-253 https://doi.org/10.1016/j.ijbiomac.2021.01.166
  45. Ahmadian, M., Khoshfetrat, A.B., Khatami, N., Morshedloo, F., Rahbarghazi, R., Hassani, A., and Kiani, S. 2020. Influence of gelatin and collagen incorporation on peroxidase-mediated injectable pectin-based hydrogel and bioactivity of fibroblasts. J. Biomater. Appl. 0885328220977601
  46. Nejati, S., Soflou, R.K., Khorshidi, S., and Karkhaneh, A. 2020. Development of an oxygen-releasing electroconductive in-situ crosslinkable hydrogel based on oxidized pectin and grafted gelatin for tissue engineering applications. Colloids Surf. B. Biointerfaces. 196, 111347 https://doi.org/10.1016/j.colsurfb.2020.111347
  47. Amirian, J., Zeng, Y., Shekh, M.I., Sharma, G., Stadler, F.J., Song, J., Du, B., and Zhu, Y. 2021. In-situ crosslinked hydrogel based on amidated pectin/oxidized chitosanas potential wound dressing for skin repairing. Carbohydr. Polym. 251, 117005 https://doi.org/10.1016/j.carbpol.2020.117005
  48. Ghorbani, M., Roshangar, L., and Rad, J.S. 2020. Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering. Eur. Polym. J. 130, 109697 https://doi.org/10.1016/j.eurpolymj.2020.109697
  49. Li, D.-q., Wang, S.-y., Meng, Y.-j., Li, J.-f., and Li, J. 2020. An injectable, self-healing hydrogel system from oxidized pectin/chitosan/γ-Fe2O3. Int. J. Biol. Macromol. 164, 4566-4574 https://doi.org/10.1016/j.ijbiomac.2020.09.072
  50. Sigaeva, N., Vil'danova, R., Sultanbaev, A., and Ivanov, S. 2020. Synthesis and Properties of Chitosan-and Pectin-Based Hydrogels. Colloid Journal. 82, 311-323 https://doi.org/10.1134/s1061933x20030114
  51. Long, J., Etxeberria, A.E., Nand, A.V., Bunt, C.R., Ray, S., and Seyfoddin, A. 2019. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater. Sci. Eng. C Mater Biol Appl. 104, 109873 https://doi.org/10.1016/j.msec.2019.109873
  52. Neufeld, L. and Bianco-Peled, H. 2017. Pectin-chitosan physical hydrogels as potential drug delivery vehicles. Int. J. Biol. Macromol. 101, 852-861 https://doi.org/10.1016/j.ijbiomac.2017.03.167
  53. Tentor, F.R., de Oliveira, J.H., Scariot, D.B., Lazarin-Bidoia, D., Bonafe, E.G., Nakamura, C.V., Venter, S.A., Monteiro, J.P., Muniz, E.C., and Martins, A.F. 2017. Scaffolds based on chitosan/pectin thermosensitive hydrogels containing gold nanoparticles. Int. J. Biol. Macromol. 102, 1186-1194 https://doi.org/10.1016/j.ijbiomac.2017.04.106
  54. Zhu, Y., Yao, Z., Liu, Y., Zhang, W., Geng, L., and Ni, T. 2020. Incorporation of ROS-responsive substance P-loaded zeolite imidazolate framework-8 nanoparticles into a Ca2+-cross-linked alginate/pectin hydrogel for wound dressing applications. Int. J. Nanomedicine. 15, 333 https://doi.org/10.2147/IJN.S225197
  55. Oh, G.-W., Nam, S.Y., Heo, S.-J., Kang, D.-H., and Jung, W.-K. 2020. Characterization of ionic cross-linked composite foams with different blend ratios of alginate/pectin on the synergistic effects for wound dressing application. Int. J. Biol. Macromol. 156, 1565-1573 https://doi.org/10.1016/j.ijbiomac.2019.11.206
  56. Chen, W., Yuan, S., Shen, J., Chen, Y., and Xiao, Y. 2020. A Composite Hydrogel Based on Pectin/Cellulose via chemical cross-linking for Hemorrhage. Front. Bioeng. Biotechnol. 8.
  57. Cargnin, M.A., de Souza, A.G., de Lima, G.F., Gasparin, B.C., dos Santos Rosa, D., and Paulino, A.T. 2020. Pinus residue/pectin-based composite hydrogels for the immobilization of β-D-galactosidase. Int. J. Biol. Macromol. 149, 773-782 https://doi.org/10.1016/j.ijbiomac.2020.01.280
  58. Lopez-Sanchez, P., Martinez-Sanz, M., Bonilla, M.R., Wang, D., Gilbert, E.P., Stokes, J.R., and Gidley, M.J. 2017. Cellulose-pectin composite hydrogels: Intermolecular interactions and material properties depend on order of assembly. Carbohydr. Polym. 162, 71-81 https://doi.org/10.1016/j.carbpol.2017.01.049
  59. Synytsya, A., Pouckova, P., Zadinova, M., Troshchynska, Y., Stetina, J., Synytsya, A., Salon, I., and Kral, V. 2020. Hydrogels based on low-methoxyl amidated citrus pectin and flaxseed gum formulated with tripeptide glycyl-l-histidyl-l-lysine improve the healing of experimental cutting wounds in rats. Int. J. Biol. Macromol. 165, 3156-3168 https://doi.org/10.1016/j.ijbiomac.2020.09.251
  60. Slavutsky, A.M. and Bertuzzi, M.A. 2019. Formulation and characterization of hydrogel based on pectin and brea gum. Int. J. Biol. Macromol. 123, 784-791 https://doi.org/10.1016/j.ijbiomac.2018.11.038
  61. Yan, W., Jia, X., Zhang, Q., Chen, H., Zhu, Q., and Yin, L. 2021. Interpenetrating polymer network hydrogels of soy protein isolate and sugar beet pectin as a potential carrier for probiotics. Food Hydrocolloids. 113, 106453 https://doi.org/10.1016/j.foodhyd.2020.106453
  62. Khorshidi, S., Karkhaneh, A., Bonakdar, S., and Omidian, M. 2020. High-strength functionalized pectin/fibroin hydrogel with tunable properties: A structure-property relationship study. J. Appl. Polym. Sci. 137, 48859 https://doi.org/10.1002/app.48859
  63. Dafe, A., Etemadi, H., Dilmaghani, A., and Mahdavinia, G.R. 2017. Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. Int. J. Biol. Macromol. 97, 536-543 https://doi.org/10.1016/j.ijbiomac.2017.01.060
  64. Kim, J. and Lee, C.-M. 2017. Wound healing potential of a polyvinyl alcohol-blended pectin hydrogel containing Hippophae rahmnoides L. extract in a rat model. Int. J. Biol. Macromol. 99, 586-593 https://doi.org/10.1016/j.ijbiomac.2017.03.014
  65. Xu, L., Cui, L., Jia, M., Li, Y., Gao, J., and Jin, X. 2018. Self-assembly of flexible graphene hydrogel electrode based on crosslinked pectin-cations. Carbohydr. Polym. 195, 593-600 https://doi.org/10.1016/j.carbpol.2018.04.078
  66. Ergin, A.D., Bayindir, Z.S., Ozcelikay, A.T., and Yuksel, N. 2021. A novel delivery system for enhancing bioavail ability of S-adenosyl-l-methionine: Pectin nanoparticlesin-microparticles and their in vitro-in vivo evaluation'. J. Drug Deliv. Sci. Technol. 61, 102096 https://doi.org/10.1016/j.jddst.2020.102096
  67. Jacob, E.M., Borah, A., Jindal, A., Pillai, S.C., Yamamoto, Y., Maekawa, T., and Kumar, D.N.S. 2020. Synthesis and characterization of citrus-derived pectin nanoparticles based on their degree of esterification. Mater. Res. 35, 1514-1522 https://doi.org/10.1557/jmr.2020.108
  68. Arias, D., Rodriguez, J., Lopez, B., and Mendez, P. 2021. Evaluation of the physicochemical properties of pectin extracted from Musa paradisiaca banana peels at different pH conditions in the formation of nanoparticles. Heliyon. 7, e06059 https://doi.org/10.1016/j.heliyon.2021.e06059
  69. Jiang, Y., Wang, D., Li, F., Li, D., and Huang, Q. 2020. Cinnamon essential oil Pickering emulsion stabilized by zein-pectin composite nanoparticles: Characterization, an timicrobial effect and advantages in storage application. Int. J. Biol. Macromol. 148, 1280-1289 https://doi.org/10.1016/j.ijbiomac.2019.10.103
  70. Thankappan, D.A., Raman, H.K., Jose, J., and Sudhakaran, S. 2020. Plant-mediated biosynthesis of zein-pectin nanoparticle: Preparation, characterization and in vitro drug release study. J. King Saud Univ. Sci. 32, 1785-1791 https://doi.org/10.1016/j.jksus.2020.01.017
  71. Wang, X., Peng, F., Liu, F., Xiao, Y., Li, F., Lei, H., Wang, J., Li, M., and Xu, H. 2020. Zein-pectin composite nanoparticles as an efficient hyperoside delivery system: Fabrication, characterization, and in vitro release property. LWT. 133, 109869 https://doi.org/10.1016/j.lwt.2020.109869
  72. Jiang, Y., Li, F., Li, D., Sun-Waterhouse, D., and Huang, Q. 2019. Zein/pectin nanoparticle-stabilized sesame oil pickering emulsions: sustainable bioactive carriers and healthy alternatives to sesame paste. Food. Bioproc. Tech. 12, 1982-1992 https://doi.org/10.1007/s11947-019-02361-4
  73. Huang, X., Liu, Y., Zou, Y., Liang, X., Peng, Y., McCle ments, D.J., and Hu, K. 2019. Encapsulation of resveratrol in zein/pectin core-shell nanoparticles: Stability, bioaccessibility, and antioxidant capacity after simulated gastrointestinal digestion. Food Hydrocolloids. 93, 261-269 https://doi.org/10.1016/j.foodhyd.2019.02.039
  74. Veneranda, M., Hu, Q., Wang, T., Luo, Y., Castro, K., and Madariaga, J.M. 2018. Formation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of eugenol. Lwt. 89, 596-603 https://doi.org/10.1016/j.lwt.2017.11.040
  75. Chang, C., Wang, T., Hu, Q., Zhou, M., Xue, J., and Luo, Y. 2017. Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin. Food Hydrocolloids. 70, 143-151 https://doi.org/10.1016/j.foodhyd.2017.03.033
  76. Khodashenas, B., Ardjmand, M., Baei, M.S., Rad, A.S., and Akbarzadeh, A. 2020. Conjugation of pectin biopolymer with Au-nanoparticles as a drug delivery system: Experimental and DFT studies. Appl. Organomet. Chem. 34, e5609 https://doi.org/10.1002/aoc.5609
  77. Kumari, G.V., JothiRajan, M., and Mathavan, T. 2018. Pectin functionalized gold nanoparticles towards singlet oxygen generation. Mater. Res. Express. 5, 085027 https://doi.org/10.1088/2053-1591/aab001
  78. Hileuskaya, K., Ladutska, A., Kulikouskaya, V., Kraskouski, A., Novik, G., Kozerozhets, I., Kozlovskiy, A., and Agabekov, V. 2020. 'Green'approach for obtaining stable pectin-capped silver nanoparticles: Physico-chemical characterization and antibacterial activity. Colloids Surf. Physicochem. Eng. Aspects. 585, 124141 https://doi.org/10.1016/j.colsurfa.2019.124141
  79. Rivas Aiello, M.B., Castrogiovanni, D., Parisi, J., Azcarate, J.C., Garcia Einschlag, F.S., Gensch, T., Bosio, G.N., and Martire, D.O. 2018. Photodynamic therapy in HeLa cells incubated with riboflavin and pectin-coated silver nanoparticles. Photochem. Photobiol. 94, 1159-1166 https://doi.org/10.1111/php.12974
  80. Attallah, O.A., Shetta, A., Elshishiny, F., and Mamdouh, W. 2020. Essential oil loaded pectin/chitosan nanoparticles preparation and optimization via Box-Behnken design against MCF-7 breast cancer cell lines. RSC Advances. 10, 8703-8708 https://doi.org/10.1039/C9RA10204C
  81. Chinnaiyan, S.K., Deivasigamani, K., and Gadela, V.R. 2019. Combined synergetic potential of metformin loaded pectin-chitosan biohybrids nanoparticle for NIDDM. Int. J. Biol. Macromol. 125, 278-289 https://doi.org/10.1016/j.ijbiomac.2018.12.009
  82. Wang, H., Yang, B., and Sun, H. 2017. Pectin-Chitosan polyelectrolyte complex nanoparticles for encapsulation and controlled release of nisin. American Journal of Polymer Science and Technology. 3, 82-88 https://doi.org/10.11648/j.ajpst.20170305.11
  83. Kiadeh, S.Z.H., Ghaee, A., Farokhi, M., Nourmohammadi, J., Bahi, A., and Ko, F.K. 2021. Electrospun pectin/modified copper-based metal-organic framework (MOF) nanofibers as a drug delivery system. Int. J. Biol. Macromol. 173, 351-365 https://doi.org/10.1016/j.ijbiomac.2021.01.058
  84. Shi, X., Cui, S., Song, X., Rickel, A.P., Sanyour, H.J., Zheng, J., Hu, J., Hong, Z., Zhou, Y., and Liu, Y. 2020. Gelatin-crosslinked pectin nanofiber mats allowing cell infiltration. Mater. Sci. Eng. C Mater Biol Appl. 112, 110941 https://doi.org/10.1016/j.msec.2020.110941
  85. Akinalan Balik, B. and Argin, S. 2020. Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends. J. Appl. Polym. Sci. 137, 48294 https://doi.org/10.1002/app.48294
  86. McCune, D., Guo, X., Shi, T., Stealey, S., Antrobus, R., Kaltchev, M., Chen, J., Kumpaty, S., Hua, X., and Ren, W. 2018. Electrospinning pectin-based nanofibers: a parametric and cross-linker study. Applied Nanoscience. 8, 33-40 https://doi.org/10.1007/s13204-018-0649-4
  87. Li, N., Xue, F., Zhang, H., Sanyour, H.J., Rickel, A.P., Uttecht, A., Fanta, B., Hu, J., and Hong, Z. 2019. Fabrication and characterization of pectin hydrogel nanofiber scaffolds for differentiation of mesenchymal stem cells into vascular cells. ACS Biomaterials Science & Engineering. 5, 6511-6519 https://doi.org/10.1021/acsbiomaterials.9b01178
  88. Hamzah, M.S.A., Ng, C., Sukor, J.A., Ali, K.S.M., and Nayan, N.H.M. 2021. Electrospinning, Preparation and Characterization of Polyvinylidene Fluoride/Pectin Electrospun Loaded with Benzalkonium Chloride as a Drug Reservoirs. Journal of Mechanical Engineering. 18, 39-51
  89. Alipour, R., Khorshidi, A., Shojaei, A.F., Mashayekhi, F., and Moghaddam, M.J.M. 2019. Skin wound healing acceleration by Ag nanoparticles embedded in PVA/PVP/Pectin/Mafenide acetate composite nanofibers. Polym. Test. 79, 106022 https://doi.org/10.1016/j.polymertesting.2019.106022
  90. Chan, S.Y., Chan, B.Q.Y., Liu, Z., Parikh, B.H., Zhang, K., Lin, Q., Su, X., Kai, D., Choo, W.S., and Young, D.J. 2017. Electrospun pectin-polyhydroxybutyrate nano fibers for retinal tissue engineering. ACS omega. 2, 8959-8968 https://doi.org/10.1021/acsomega.7b01604
  91. Patra, N., M. Salerno, and M. Cernik. 2017. Electrospun polyvinyl alcohol/pectin composite nanofiber. In: Electro spun Nanofibers, Woodhead, Elsevier Publishers, pp 599-608.
  92. Ahmed, E.M., Aggor, F.S., Awad, A.M., and El-Aref, A.T. 2013. An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel. Carbohydr. Polym. 91, 693-698 https://doi.org/10.1016/j.carbpol.2012.08.056
  93. Oh, S.-T., Kim, S.-H., Jeong, H.-Y., Lee, J.-M., Cho, J.W., and Park, J.-S. 2013. The mechanical properties of polyurethane foam wound dressing hybridized with alginate hydrogel and jute fiber. Fibers and Polymers. 14, 173-181 https://doi.org/10.1007/s12221-013-0173-9
  94. Gyles, D.A., Castro, L.D., Silva Jr, J.O.C., and Ribeiro-Costa, R.M. 2017. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur. Polym. J. 88, 373-392 https://doi.org/10.1016/j.eurpolymj.2017.01.027
  95. Pollot, B.E., Rathbone, C.R., Wenke, J.C., and Guda, T. 2018. Natural polymeric hydrogel evaluation for skeletal muscle tissue engineering. J. Biomed. Mater. Res. B. Appl. Biomater. 106, 672-679 https://doi.org/10.1002/jbm.b.33859
  96. Klein, T.J., Rizzi, S.C., Schrobback, K., Reichert, J.C., Jeon, J.E., Crawford, R.W., and Hutmacher, D.W. 2010. Long-term effects of hydrogel properties on human chondrocyte behavior. Soft Matter. 6, 5175-5183 https://doi.org/10.1039/c0sm00229a
  97. Parlato, M., Reichert, S., Barney, N., and Murphy, W.L. 2014. Poly (ethylene glycol) hydrogels with adaptable mechanical and degradation properties for use in biomedical applications. Macromol. Biosci. 14, 687-698 https://doi.org/10.1002/mabi.201300418
  98. Ozay, O., Ekici, S., Baran, Y., Kubilay, S., Aktas, N., and Sahiner, N. 2010. Utilization of magnetic hydrogels in the separation of toxic metal ions from aqueous environments. Desalination. 260, 57-64 https://doi.org/10.1016/j.desal.2010.04.067
  99. Kim, J.J. and Park, K. 1998. Smart hydrogels for biosepa ration. Bioseparation. 7, 177-184 https://doi.org/10.1023/A:1008050124949
  100. Park, H. and Park, K. 1996. Hydrogels in bioapplications.
  101. Ahmed, E.M. 2015. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 6, 105-121 https://doi.org/10.1016/j.jare.2013.07.006
  102. Agaba, H., Orikiriza, L.J., Obua, J., Kabasa, J.D., Worbes, M., and Huttermann, A. 2011. Hydrogel amendment to sandy soil reduces irrigation frequency and improves the biomass of Agrostis stolonifera. Agricultural Sciences. 2, 544 https://doi.org/10.4236/as.2011.24071
  103. Ullah, F., Othman, M.B.H., Javed, F., Ahmad, Z., and Akil, H.M. 2015. Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C Mater Biol Appl. 57, 414-433 https://doi.org/10.1016/j.msec.2015.07.053
  104. Vityazev, F.V., Khramova, D.S., Saveliev, N.Y., Ipatova, E.A., Burkov, A.A., Beloserov, V.S., Belyi, V.A., Kononov, L.O., Martinson, E.A., and Litvinets, S.G. 2020. Pectin-glycerol gel beads: Preparation, characterization and swelling behaviour. Carbohydr. Polym. 238, 116166 https://doi.org/10.1016/j.carbpol.2020.116166
  105. Brett, D. 2008. A review of collagen and collagen-based wound dressings. Wounds. 20, 347-356
  106. Chandika, P., Ko, S.-C., Oh, G.-W., Heo, S.-Y., Nguyen, V.-T., Jeon, Y.-J., Lee, B., Jang, C.H., Kim, G., and Park, W.S. 2015. Fish collagen/alginate/chitooligosaccha rides integrated scaffold for skin tissue regeneration application. Int. J. Biol. Macromol. 81, 504-513 https://doi.org/10.1016/j.ijbiomac.2015.08.038
  107. Duconseille, A., Astruc, T., Quintana, N., Meersman, F., and Sante-Lhoutellier, V. 2015. Gelatin structure and composition linked to hard capsule dissolution: A review. Food hydrocolloids. 43, 360-376 https://doi.org/10.1016/j.foodhyd.2014.06.006
  108. Shukla, S.K., Mishra, A.K., Arotiba, O.A., and Mamba, B.B. 2013. Chitosan-based nanomaterials: A state-of-the-art review. Int. J. Biol. Macromol. 59, 46-58 https://doi.org/10.1016/j.ijbiomac.2013.04.043
  109. Pedroni, V., Schulz, P., Gschaider, M., and Andreucetti, N. 2003. Chitosan structure in aqueous solution. Colloid and Polymer Science. 282, 100-102 https://doi.org/10.1007/s00396-003-0965-3
  110. Muzzarelli, R. and Muzzarelli, C. 2005. Chitosan chemistry: relevance to the biomedical sciences. Polysaccharides I. 151-209
  111. Mima, S., Miya, M., Iwamoto, R., and Yoshikawa, S. 1983. Highly deacetylated chitosan and its properties. J. Appl. Polym. Sci. 28, 1909-1917 https://doi.org/10.1002/app.1983.070280607
  112. Wang, B., Wan, Y., Zheng, Y., Lee, X., Liu, T., Yu, Z., Huang, J., Ok, Y.S., Chen, J., and Gao, B. 2019. Alginate-based composites for environmental applications: a critical review. Crit. Rev. Environ. Sci. Technol. 49, 318-356 https://doi.org/10.1080/10643389.2018.1547621
  113. Aguero, L., Zaldivar-Silva, D., Pena, L., and Dias, M.L. 2017. Alginate microparticles as oral colon drug delivery device: A review. Carbohydr. Polym. 168, 32-43 https://doi.org/10.1016/j.carbpol.2017.03.033
  114. Foster, E.J., Moon, R.J., Agarwal, U.P., Bortner, M.J., Bras, J., Camarero-Espinosa, S., Chan, K.J., Clift, M.J., Cranston, E.D., and Eichhorn, S.J. 2018. Current characterization methods for cellulose nanomaterials. Chemical Society Reviews. 47, 2609-2679 https://doi.org/10.1039/C6CS00895J
  115. Sharma, A., Thakur, M., Bhattacharya, M., Mandal, T., and Goswami, S. 2019. Commercial application of cellulose nano-composites-A review. Biotechnology Reports. 21, e00316 https://doi.org/10.1016/j.btre.2019.e00316
  116. Slavutsky, A.M., Bertuzzi, M.A., Armada, M., Garcia, M.G., and Ochoa, N.A. 2014. Preparation and characterization of montmorillonite/brea gum nanocomposites films. Food Hydrocolloids. 35, 270-278 https://doi.org/10.1016/j.foodhyd.2013.06.008
  117. Safdar, B., Pang, Z., Liu, X., Jatoi, M.A., Mehmood, A., Rashid, M.T., Ali, N., and Naveed, M. 2019. Flaxseed gum: Extraction, bioactive composition, structural characterization, and its potential antioxidant activity. J. Food Biochem. 43, e13014
  118. SANCHEZ GIL, Yaritza M. 2014. Characterization and rheological properties of Camelina sativa gum: interactions with xanthan gum, guar gum, and locust bean gum. PhD Thesis. Kansas State University.
  119. Nishinari, K., Fang, Y., Guo, S., and Phillips, G. 2014. Soy proteins: A review on composition, aggregation and emulsification. Food hydrocolloids. 39, 301-318 https://doi.org/10.1016/j.foodhyd.2014.01.013
  120. Fernandez-Fernandez, M., Sanroman, M.A., and Moldes, D. 2013. Recent developments and applications of immobilized laccase. Biotechnol. Adv. 31, 1808-1825 https://doi.org/10.1016/j.biotechadv.2012.02.013
  121. Kundu, B., Rajkhowa, R., Kundu, S.C., and Wang, X. 2013. Silk fibroin biomaterials for tissue regenerations. Adv. Drug Del. Rev. 65, 457-470 https://doi.org/10.1016/j.addr.2012.09.043
  122. Bertoft, E. 2017. Understanding starch structure: Recent progress. Agronomy. 7, 56 https://doi.org/10.3390/agronomy7030056
  123. Kim, M.-S., Oh, G.-W., Jang, Y.-M., Ko, S.-C., Park, W.-S., Choi, I.-W., Kim, Y.-M., and Jung, W.-K. 2020. Antimicrobial hydrogels based on PVA and diphlorethoh ydroxycarmalol (DPHC) derived from brown alga Ishige okamurae: An in vitro and in vivo study for wound dressing application. Mater. Sci. Eng. C Mater Biol Appl. 107, 110352 https://doi.org/10.1016/j.msec.2019.110352
  124. Chabot, V., Higgins, D., Yu, A., Xiao, X., Chen, Z., and Zhang, J. 2014. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7, 1564-1596 https://doi.org/10.1039/c3ee43385d
  125. Chung, C., Kim, Y.-K., Shin, D., Ryoo, S.-R., Hong, B.H., and Min, D.-H. 2013. Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46, 2211-2224 https://doi.org/10.1021/ar300159f
  126. Shamaila, S., Sajjad, A.K.L., Farooqi, S.A., Jabeen, N., Majeed, S., and Farooq, I. 2016. Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl. Mater. Today. 5, 150-199 https://doi.org/10.1016/j.apmt.2016.09.009
  127. Zhang, H., Han, J., and Yang, B. 2010. Structural fabrication and functional modulation of nanoparticle-polymer composites. Adv. Funct. Mater. 20, 1533-1550 https://doi.org/10.1002/adfm.201000089
  128. El-Sayed, A. and Kamel, M. 2020. Advanced applications of nanotechnology in veterinary medicine. Environ. Sci. Pollut. Res. 27, 19073-19086 https://doi.org/10.1007/s11356-018-3913-y
  129. Yezdani, U., Khan, M.G., Kushwah, N., Verma, A., and Khan, F. 2018. APPLICATION OF NANOTECHN OLOGY IN DIAGNOSIS AND TREATMENT OF VARIOUS DISEASES AND ITS FUTURE ADVANCES IN MEDICINE. World J Pharm Pharm Sci. 7, 1611-163 3
  130. Emerich, D.F. and Thanos, C.G. 2003. Nanotechnology and medicine. Expert Opin. Biol. Ther. 3, 655-663 https://doi.org/10.1517/eobt.3.4.655.21202
  131. Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P., and Bannerjee, S.K. 2012. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2, 2 https://doi.org/10.4103/2230-973X.96920
  132. Rajendran, N.K., Kumar, S.S.D., Houreld, N.N., and Abrahamse, H. 2018. A review on nanoparticle based treatment for wound healing. J. Drug. Deliv. Sci. Technol. 44, 421-430 https://doi.org/10.1016/j.jddst.2018.01.009
  133. Mohanraj, V. and Chen, Y. 2006. Nanoparticles-a review. Trop J Pharm Res. 5, 561-573
  134. Guo, Y., Liu, Z., An, H., Li, M., and Hu, J. 2005. Nano-structure and properties of maize zein studied by atomic force microscopy. J. Cereal Sci. 41, 277-281 https://doi.org/10.1016/j.jcs.2004.12.005
  135. Corradini, E., Curti, P.S., Meniqueti, A.B., Martins, A. F., Rubira, A.F., and Muniz, E.C. 2014. Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials. Int. J. Mol. Sci. 15, 22438-22470 https://doi.org/10.3390/ijms151222438
  136. Cobley, C.M., Chen, J., Cho, E.C., Wang, L.V., and Xia, Y. 2011. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 40, 44-56 https://doi.org/10.1039/B821763G
  137. Borker, S. and Pokharkar, V. 2018. Engineering of pectin-capped gold nanoparticles for delivery of doxorubicin to hepatocarcinoma cells: An insight into mechanism of cellular uptake. Artif. Cells. Nanomed. Biotechnol. 46, 826-835 https://doi.org/10.1080/21691401.2018.1470525
  138. Burdusel, A.-C., Gherasim, O., Grumezescu, A.M., Mogoanta, L., Ficai, A., and Andronescu, E. 2018. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials. 8, 681 https://doi.org/10.3390/nano8090681
  139. Rieger, K.A., Birch, N.P., and Schiffman, J.D. 2013. Designing electrospun nanofiber mats to promote wound healing-a review. J. Mater. Chem. B. 1, 4531-4541 https://doi.org/10.1039/c3tb20795a
  140. Oh, G.-W., Ko, S.-C., Je, J.-Y., Kim, Y.-M., Oh, J., and Jung, W.-K. 2016. Fabrication, characterization and determination of biological activities of poly (ε-caprolactone)/chitosan-caffeic acid composite fibrous mat for wound dressing application. Int. J. Biol. Macromol. 93, 1549-1558 https://doi.org/10.1016/j.ijbiomac.2016.06.065
  141. Chandika, P., Oh, G.-W., Heo, S.-Y., Kim, S.-C., Kim, T.-H., Kim, M.-S., and Jung, W.-K. 2021. Electrospun porous bilayer nano-fibrous fish collagen/PCL bio-composite scaffolds with covalently cross-linked chitooligosaccharides for full-thickness wound-healing applications. Mater. Sci. Eng. C Mater Biol Appl. 121, 111871 https://doi.org/10.1016/j.msec.2021.111871
  142. Szentivanyi, A.L., Zernetsch, H., Menzel, H., and Glasmacher, B. 2011. A review of developments in electrospinning technology: New opportunities for the design of artificial tissue structures. Int. J. Artif. Organs. 34, 986-997 https://doi.org/10.5301/ijao.5000062
  143. Cheng, H., Yang, X., Che, X., Yang, M., and Zhai, G. 2018. Biomedical application and controlled drug release of electrospun fibrous materials. Mater. Sci. Eng. C Mater Biol Appl. 90, 750-763 https://doi.org/10.1016/j.msec.2018.05.007
  144. Teo, W.E. and Ramakrishna, S. 2006. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 17, R89 https://doi.org/10.1088/0957-4484/17/14/R01
  145. Yu, M., Ahn, K.H., and Lee, S.J. 2016. Design optimization of ink in electrohydrodynamic jet printing: Effect of viscoelasticity on the formation of Taylor cone jet. Materials & Design. 89, 109-115 https://doi.org/10.1016/j.matdes.2015.09.141
  146. Ma, L., Deng, L., and Chen, J. 2014. Applications of poly (ethylene oxide) in controlled release tablet systems: a review. Drug Dev. Ind. Pharm. 40, 845-851 https://doi.org/10.3109/03639045.2013.831438