Acknowledgement
This work was supported by the Pukyong National University Research Fund 2019.
References
- Steiner, T. 2003. C-H⋯ O hydrogen bonding in crystals. Crystallogr. Rev. 9, 177-228 https://doi.org/10.1080/08893110310001621772
- Perez-Castineira, J. 2020, 3 Carbohydrates, In: Chemistry and Biochemistry of Food, De Gruyter. p. 25-78.
- Sood, A., Gupta, A., and Agrawal, G. 2021. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carbohydr. Polym. Technol. Appl. 2, 100067
- Agostoni, M., Hangasky, J.A., and Marletta, M.A. 2017. Physiological and molecular understanding of bacterial polysaccharide monooxygenases. Microbiol. Mol. Biol. Rev. 81.
- Muzzarelli, R.A., Boudrant, J., Meyer, D., Manno, N., DeMarchis, M., and Paoletti, M.G. 2012. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr. Polym. 87, 995-1012 https://doi.org/10.1016/j.carbpol.2011.09.063
- Thakur, B.R., Singh, R.K., Handa, A.K., and Rao, M. 1997. Chemistry and uses of pectin-a review. Crit. Rev. Food. Sci. Nutr. 37, 47-73 https://doi.org/10.1080/10408399709527767
- Mugampoza, D., Gafuma, S., Kyosaba, P., and Namakajjo, R. 2020. Characterization of pectin from pulp and peel of Ugandan cooking bananas at different stages of ripening. J. Food Res. 9, 67-77 https://doi.org/10.5539/jfr.v9n5p67
- Conrad, C.M. 1926. A biochemical study of the insoluble pectic substances in vegetables. Am. J. Bot. 13, 531-547 https://doi.org/10.2307/2435283
- Additives, E.P.o.F., Food, N.S.a.t., Mortensen, A., Aguilar, F., Crebelli, R., Di Domenico, A., Dusemund, B., Frutos, M.J., Galtier, P., Gott, D., and Gundert-Remy, U. 2017. Re-evaluation of pectin (E 440i) and amidated pectin (E 440ii) as food additives. EFSA Journal. 15, e04866
- Wang, R., Liang, R., Dai, T.-t., Chen, J., Shuai, X., and Liu, C. 2019. Pectin-based adsorbents for heavy metalions: A review. Trends Food Sci. Technol. 91, 318-329
- Xu, S. Y., Liu, J. P., Huang, X., Du, L. P., Shi, F. L., Dong, R., Huang, W-T., Zheng, K., Liu, Y., and Cheong, K-L. 2018. Ultrasonic-microwave assisted extraction, characterization and biological activity of pectin from jackfruit peel. LWT. 90, p. 577-582. https://doi.org/10.1016/j.lwt.2018.01.007
- El-Nawawi, S. and Heikal, Y. 1995. Production of a low ester pectin by de-esterification of high ester citrus pectin. Carbohydr. Polym. 27, 191-195 https://doi.org/10.1016/0144-8617(95)00051-8
- Kim, Y., Kim, Y. S., Yoo, S. H., and Kim, K. O. 2010. Molecular differences of low methoxy pectins induced by pectin methyl esterase I: Effects on texture, release and perception of aroma in gel systems. Food Chemistry. 123(2), p. 451-455.
- Sriamornsak, P., 2003. Chemistry of pectin and its pharmaceutical uses: A review. Silpakorn University International Journal, 3(1-2): p. 206-228.
- Leclere, L., Van Cutsem, P., and Michiels, C. 2013. Anticancer activities of pH-or heat-modified pectin. FRONT PHARMACOL. 4, 128
- Zhang, W., Xu, P., and Zhang, H. 2015. Pectin in cancer therapy: A review. Trends Food Sci. Technol. 44, 258-271 https://doi.org/10.1016/j.tifs.2015.04.001
- Markov, P., Popov, S., Nikitina, I., Ovodova, R., and Ovodov, Y.S. 2011. Anti-inflammatory activity of pectins and their galacturonan backbone. Russ. J. Bioorganic Chem. 37, 817-821 https://doi.org/10.1134/S1068162011070132
- Ogutu, F.O. and Mu, T.-H. 2017. Ultrasonic degradation of sweet potato pectin and its antioxidant activity. Ultras on. Sonochem. 38, 726-734 https://doi.org/10.1016/j.ultsonch.2016.08.014
- Liu, Y., Dong, M., Yang, Z., and Pan, S. 2016. Anti-diabetic effect of citrus pectin in diabetic rats and potential mechanism via PI3K/Akt signaling pathway. Int. J. Biol. Macromol. 89, 484-488 https://doi.org/10.1016/j.ijbiomac.2016.05.015
- Hu, H., Zhang, S., Liu, F., Zhang, P., Muhammad, Z., and Pan, S. 2019. Role of the gut microbiota and their metabolites in modulating the cholesterol-lowering effects of citrus pectin oligosaccharides in C57BL/6 mice. J. Agric. Food Chem. 67, 11922-11930 https://doi.org/10.1021/acs.jafc.9b03731
- Munarin, F., Tanzi, M.C., and Petrini, P. 2012. Advances in biomedical applications of pectin gels. Int. J. Biol. Macromol. 51, 681-689 https://doi.org/10.1016/j.ijbiomac.2012.07.002
- Yang, R.-f., Zhao, C., Chen, X., Chan, S.-w., and Wu, J.-y. 2015. Chemical properties and bioactivities of Goji (Lycium barbarum) polysaccharides extracted by different methods. J. Funct. Foods. 17, 903-909 https://doi.org/10.1016/j.jff.2015.06.045
- Puri, M., Sharma, D., and Barrow, C.J. 2012. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 30, 37-44 https://doi.org/10.1016/j.tibtech.2011.06.014
- Picot-Allain, M.C.N., Ramasawmy, B., and Emmambux, M.N. 2020. Extraction, characterisation, and application of pectin from tropical and sub-tropical fruits: a review. Food Rev. Int. 1-31
- Shekharam, K.M., Venkataraman, L., and Salimath, P. 1987. Carbohydrate composition and characterization of two unusual sugars from the blue green alga Spirulina platensis. Phytochemistry. 26, 2267-2269 https://doi.org/10.1016/S0031-9422(00)84698-1
- Cheng, Y.S., Labavitch, J., and VanderGheynst, J. 2015. Elevated CO 2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella. Lett. Appl. Microbiol. 60, 1-7 https://doi.org/10.1111/lam.12320
- 이경아, 최운용, 박건후, 정윤식, 이연지, and 강도형. 2020. 해양조류 14 종 유래 Marine Pectin 의 추출 및 이의 함량과 항산화 활성에 관한 연구. J. Korean. Soc. Food. Sci. Nutr. 49, 677-685 https://doi.org/10.3746/jkfn.2020.49.7.677
- Edirisinghe, S., Dananjaya, S., Nikapitiya, C., Liyanage, T., Lee, K.-A., Oh, C., Kang, D.-H., and De Zoysa, M. 2019. Novel pectin isolated from Spirulina maxima enhances the disease resistance and immune responses in zebrafish against Edwardsiella piscicida and Aeromonas hydrophila. Fish Shellfish Immunol. 94, 558-565 https://doi.org/10.1016/j.fsi.2019.09.054
- Chandrarathna, H., Liyanage, T., Edirisinghe, S., Dananjaya, S., Thulshan, E., Nikapitiya, C., Oh, C., Kang, D.-H., and De Zoysa, M. 2020. Marine microalgae, Spirulina maxima-derived modified pectin and modified pectin nanoparticles modulate the gut microbiota and trigger immune responses in Mice. Mar. Drugs. 18, 175 https://doi.org/10.3390/md18030175
- Edirisinghe, S., Rajapaksha, D., Nikapitiya, C., Oh, C., Lee, K.-A., Kang, D.-H., and De Zoysa, M. 2020. Spirulina maxima derived marine pectin promotes the in vitro and in vivo regeneration and wound healing in zebrafish. Fish Shellfish Immunol. 107, 414-425 https://doi.org/10.1016/j.fsi.2020.10.008
- Rajapaksha, D.C., Edirisinghe, S.L., Nikapitiya, C., Dananjaya, S., Kwun, H.-J., Kim, C.-H., Oh, C., Kang, D.-H., and De Zoysa, M. 2020. Spirulina maxima Derived Pectin Nanoparticles Enhance the Immunomodulation, Stress Tolerance, and Wound Healing in Zebrafish. Mar. Drugs. 18, 556 https://doi.org/10.3390/md18110556
- Domozych, D.S., Sorensen, I., Popper, Z.A., Ochs, J., Andreas, A., Fangel, J.U., Pielach, A., Sacks, C., Brechka, H., and Ruisi-Besares, P. 2014. Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum. Plant Physiol. 165, 105-118 https://doi.org/10.1104/pp.114.236257
- Eder, M. and Lutz-Meindl, U. 2010. Analyses and localization of pectin-like carbohydrates in cell wall and mucilage of the green alga Netrium digitus. Protoplasma. 243, 25-38 https://doi.org/10.1007/s00709-009-0040-0
- Gasparyan, A.Y. and Banach, M. 2009. A medium of science communication in our times. Arch. Med. Sci. 5, 1
- Sharma, G., Thakur, B., Naushad, M., Kumar, A., Stadler, F.J., Alfadul, S.M., and Mola, G.T. 2018. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environ. Chem. Lett. 16, 113-146 https://doi.org/10.1007/s10311-017-0671-x
- Islam, S., Bhuiyan, M.R., and Islam, M. 2017. Chitin and chitosan: structure, properties and applications in bio medical engineering. J. POLYM. ENVIRON. 25, 854-866 https://doi.org/10.1007/s10924-016-0865-5
- Saghazadeh, S., Rinoldi, C., Schot, M., Kashaf, S.S., Sharifi, F., Jalilian, E., Nuutila, K., Giatsidis, G., Mostafalu, P., and Derakhshandeh, H. 2018. Drug delivery systems and materials for wound healing applications. Adv. Drug Del. Rev. 127, 138-166 https://doi.org/10.1016/j.addr.2018.04.008
- Rodoplu, S., Celik, B.E., Kocaaga, B., Ozturk, C., Batirel, S., Turan, D., and Guner, F.S. 2021. Dual effect of procaine-loaded pectin hydrogels: pain management and in vitro wound healing. Polymer Bulletin. 78, 2227-2250 https://doi.org/10.1007/s00289-020-03210-7
- Mahmoud, M.E. and Mohamed, A.K. 2020. Novel derived pectin hydrogel from mandarin peel based metal-organic frameworks composite for enhanced Cr (VI) and Pb (II) ions removal. Int. J. Biol. Macromol. 164, 920-931 https://doi.org/10.1016/j.ijbiomac.2020.07.090
- Guner, O., Kocaaga, B., Batirel, S., Kurkcuoglu, O., and Guner, F. 2020. 2-Thiobarbituric acid addition improves structural integrity and controlled drug delivery of biocompatible pectin hydrogels. INT. J. POLYM. MATER. 1-9
- Markov, P.A., Khramova, D.S., Shumikhin, K.V., Nikitina, I.R., Beloserov, V.S., Martinson, E.A., Litvinets, S.G., and Popov, S.V. 2019. Mechanical properties of the pectin hydrogels and inflammation response to their subcutaneous implantation. J. Biomed. Mater. Res. A. 107, 2088-2098 https://doi.org/10.1002/jbm.a.36721
- Sarioglu, E., Arabacioglu Kocaaga, B., Turan, D., Batirel, S., and Guner, F.S. 2019. Theophylline-loaded pectin-based hydrogels. II. Effect of concentration of initial pectin solution, crosslinker type and cation concentration of external solution on drug release profile. J. Appl. Polym. Sci. 136, 48155 https://doi.org/10.1002/app.48155
- Markov, P.A., Krachkovsky, N.S., Durnev, E.A., Martinson, E.A., Litvinets, S.G., and Popov, S.V. 2017. Mechanical properties, structure, bioadhesion, and biocompatibility of pectin hydrogels. J. Biomed. Mater. Res. A. 105, 2572-2581 https://doi.org/10.1002/jbm.a.36116
- Goel, H., Gupta, N., Santhiya, D., Dey, N., Bohidar, H.B., and Bhattacharya, A. 2021. Bioactivity reinforced surface patch bound collagen-pectin hydrogel. Int. J. Biol. Macromol. 174, 240-253 https://doi.org/10.1016/j.ijbiomac.2021.01.166
- Ahmadian, M., Khoshfetrat, A.B., Khatami, N., Morshedloo, F., Rahbarghazi, R., Hassani, A., and Kiani, S. 2020. Influence of gelatin and collagen incorporation on peroxidase-mediated injectable pectin-based hydrogel and bioactivity of fibroblasts. J. Biomater. Appl. 0885328220977601
- Nejati, S., Soflou, R.K., Khorshidi, S., and Karkhaneh, A. 2020. Development of an oxygen-releasing electroconductive in-situ crosslinkable hydrogel based on oxidized pectin and grafted gelatin for tissue engineering applications. Colloids Surf. B. Biointerfaces. 196, 111347 https://doi.org/10.1016/j.colsurfb.2020.111347
- Amirian, J., Zeng, Y., Shekh, M.I., Sharma, G., Stadler, F.J., Song, J., Du, B., and Zhu, Y. 2021. In-situ crosslinked hydrogel based on amidated pectin/oxidized chitosanas potential wound dressing for skin repairing. Carbohydr. Polym. 251, 117005 https://doi.org/10.1016/j.carbpol.2020.117005
- Ghorbani, M., Roshangar, L., and Rad, J.S. 2020. Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering. Eur. Polym. J. 130, 109697 https://doi.org/10.1016/j.eurpolymj.2020.109697
- Li, D.-q., Wang, S.-y., Meng, Y.-j., Li, J.-f., and Li, J. 2020. An injectable, self-healing hydrogel system from oxidized pectin/chitosan/γ-Fe2O3. Int. J. Biol. Macromol. 164, 4566-4574 https://doi.org/10.1016/j.ijbiomac.2020.09.072
- Sigaeva, N., Vil'danova, R., Sultanbaev, A., and Ivanov, S. 2020. Synthesis and Properties of Chitosan-and Pectin-Based Hydrogels. Colloid Journal. 82, 311-323 https://doi.org/10.1134/s1061933x20030114
- Long, J., Etxeberria, A.E., Nand, A.V., Bunt, C.R., Ray, S., and Seyfoddin, A. 2019. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater. Sci. Eng. C Mater Biol Appl. 104, 109873 https://doi.org/10.1016/j.msec.2019.109873
- Neufeld, L. and Bianco-Peled, H. 2017. Pectin-chitosan physical hydrogels as potential drug delivery vehicles. Int. J. Biol. Macromol. 101, 852-861 https://doi.org/10.1016/j.ijbiomac.2017.03.167
- Tentor, F.R., de Oliveira, J.H., Scariot, D.B., Lazarin-Bidoia, D., Bonafe, E.G., Nakamura, C.V., Venter, S.A., Monteiro, J.P., Muniz, E.C., and Martins, A.F. 2017. Scaffolds based on chitosan/pectin thermosensitive hydrogels containing gold nanoparticles. Int. J. Biol. Macromol. 102, 1186-1194 https://doi.org/10.1016/j.ijbiomac.2017.04.106
- Zhu, Y., Yao, Z., Liu, Y., Zhang, W., Geng, L., and Ni, T. 2020. Incorporation of ROS-responsive substance P-loaded zeolite imidazolate framework-8 nanoparticles into a Ca2+-cross-linked alginate/pectin hydrogel for wound dressing applications. Int. J. Nanomedicine. 15, 333 https://doi.org/10.2147/IJN.S225197
- Oh, G.-W., Nam, S.Y., Heo, S.-J., Kang, D.-H., and Jung, W.-K. 2020. Characterization of ionic cross-linked composite foams with different blend ratios of alginate/pectin on the synergistic effects for wound dressing application. Int. J. Biol. Macromol. 156, 1565-1573 https://doi.org/10.1016/j.ijbiomac.2019.11.206
- Chen, W., Yuan, S., Shen, J., Chen, Y., and Xiao, Y. 2020. A Composite Hydrogel Based on Pectin/Cellulose via chemical cross-linking for Hemorrhage. Front. Bioeng. Biotechnol. 8.
- Cargnin, M.A., de Souza, A.G., de Lima, G.F., Gasparin, B.C., dos Santos Rosa, D., and Paulino, A.T. 2020. Pinus residue/pectin-based composite hydrogels for the immobilization of β-D-galactosidase. Int. J. Biol. Macromol. 149, 773-782 https://doi.org/10.1016/j.ijbiomac.2020.01.280
- Lopez-Sanchez, P., Martinez-Sanz, M., Bonilla, M.R., Wang, D., Gilbert, E.P., Stokes, J.R., and Gidley, M.J. 2017. Cellulose-pectin composite hydrogels: Intermolecular interactions and material properties depend on order of assembly. Carbohydr. Polym. 162, 71-81 https://doi.org/10.1016/j.carbpol.2017.01.049
- Synytsya, A., Pouckova, P., Zadinova, M., Troshchynska, Y., Stetina, J., Synytsya, A., Salon, I., and Kral, V. 2020. Hydrogels based on low-methoxyl amidated citrus pectin and flaxseed gum formulated with tripeptide glycyl-l-histidyl-l-lysine improve the healing of experimental cutting wounds in rats. Int. J. Biol. Macromol. 165, 3156-3168 https://doi.org/10.1016/j.ijbiomac.2020.09.251
- Slavutsky, A.M. and Bertuzzi, M.A. 2019. Formulation and characterization of hydrogel based on pectin and brea gum. Int. J. Biol. Macromol. 123, 784-791 https://doi.org/10.1016/j.ijbiomac.2018.11.038
- Yan, W., Jia, X., Zhang, Q., Chen, H., Zhu, Q., and Yin, L. 2021. Interpenetrating polymer network hydrogels of soy protein isolate and sugar beet pectin as a potential carrier for probiotics. Food Hydrocolloids. 113, 106453 https://doi.org/10.1016/j.foodhyd.2020.106453
- Khorshidi, S., Karkhaneh, A., Bonakdar, S., and Omidian, M. 2020. High-strength functionalized pectin/fibroin hydrogel with tunable properties: A structure-property relationship study. J. Appl. Polym. Sci. 137, 48859 https://doi.org/10.1002/app.48859
- Dafe, A., Etemadi, H., Dilmaghani, A., and Mahdavinia, G.R. 2017. Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. Int. J. Biol. Macromol. 97, 536-543 https://doi.org/10.1016/j.ijbiomac.2017.01.060
- Kim, J. and Lee, C.-M. 2017. Wound healing potential of a polyvinyl alcohol-blended pectin hydrogel containing Hippophae rahmnoides L. extract in a rat model. Int. J. Biol. Macromol. 99, 586-593 https://doi.org/10.1016/j.ijbiomac.2017.03.014
- Xu, L., Cui, L., Jia, M., Li, Y., Gao, J., and Jin, X. 2018. Self-assembly of flexible graphene hydrogel electrode based on crosslinked pectin-cations. Carbohydr. Polym. 195, 593-600 https://doi.org/10.1016/j.carbpol.2018.04.078
- Ergin, A.D., Bayindir, Z.S., Ozcelikay, A.T., and Yuksel, N. 2021. A novel delivery system for enhancing bioavail ability of S-adenosyl-l-methionine: Pectin nanoparticlesin-microparticles and their in vitro-in vivo evaluation'. J. Drug Deliv. Sci. Technol. 61, 102096 https://doi.org/10.1016/j.jddst.2020.102096
- Jacob, E.M., Borah, A., Jindal, A., Pillai, S.C., Yamamoto, Y., Maekawa, T., and Kumar, D.N.S. 2020. Synthesis and characterization of citrus-derived pectin nanoparticles based on their degree of esterification. Mater. Res. 35, 1514-1522 https://doi.org/10.1557/jmr.2020.108
- Arias, D., Rodriguez, J., Lopez, B., and Mendez, P. 2021. Evaluation of the physicochemical properties of pectin extracted from Musa paradisiaca banana peels at different pH conditions in the formation of nanoparticles. Heliyon. 7, e06059 https://doi.org/10.1016/j.heliyon.2021.e06059
- Jiang, Y., Wang, D., Li, F., Li, D., and Huang, Q. 2020. Cinnamon essential oil Pickering emulsion stabilized by zein-pectin composite nanoparticles: Characterization, an timicrobial effect and advantages in storage application. Int. J. Biol. Macromol. 148, 1280-1289 https://doi.org/10.1016/j.ijbiomac.2019.10.103
- Thankappan, D.A., Raman, H.K., Jose, J., and Sudhakaran, S. 2020. Plant-mediated biosynthesis of zein-pectin nanoparticle: Preparation, characterization and in vitro drug release study. J. King Saud Univ. Sci. 32, 1785-1791 https://doi.org/10.1016/j.jksus.2020.01.017
- Wang, X., Peng, F., Liu, F., Xiao, Y., Li, F., Lei, H., Wang, J., Li, M., and Xu, H. 2020. Zein-pectin composite nanoparticles as an efficient hyperoside delivery system: Fabrication, characterization, and in vitro release property. LWT. 133, 109869 https://doi.org/10.1016/j.lwt.2020.109869
- Jiang, Y., Li, F., Li, D., Sun-Waterhouse, D., and Huang, Q. 2019. Zein/pectin nanoparticle-stabilized sesame oil pickering emulsions: sustainable bioactive carriers and healthy alternatives to sesame paste. Food. Bioproc. Tech. 12, 1982-1992 https://doi.org/10.1007/s11947-019-02361-4
- Huang, X., Liu, Y., Zou, Y., Liang, X., Peng, Y., McCle ments, D.J., and Hu, K. 2019. Encapsulation of resveratrol in zein/pectin core-shell nanoparticles: Stability, bioaccessibility, and antioxidant capacity after simulated gastrointestinal digestion. Food Hydrocolloids. 93, 261-269 https://doi.org/10.1016/j.foodhyd.2019.02.039
- Veneranda, M., Hu, Q., Wang, T., Luo, Y., Castro, K., and Madariaga, J.M. 2018. Formation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of eugenol. Lwt. 89, 596-603 https://doi.org/10.1016/j.lwt.2017.11.040
- Chang, C., Wang, T., Hu, Q., Zhou, M., Xue, J., and Luo, Y. 2017. Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin. Food Hydrocolloids. 70, 143-151 https://doi.org/10.1016/j.foodhyd.2017.03.033
- Khodashenas, B., Ardjmand, M., Baei, M.S., Rad, A.S., and Akbarzadeh, A. 2020. Conjugation of pectin biopolymer with Au-nanoparticles as a drug delivery system: Experimental and DFT studies. Appl. Organomet. Chem. 34, e5609 https://doi.org/10.1002/aoc.5609
- Kumari, G.V., JothiRajan, M., and Mathavan, T. 2018. Pectin functionalized gold nanoparticles towards singlet oxygen generation. Mater. Res. Express. 5, 085027 https://doi.org/10.1088/2053-1591/aab001
- Hileuskaya, K., Ladutska, A., Kulikouskaya, V., Kraskouski, A., Novik, G., Kozerozhets, I., Kozlovskiy, A., and Agabekov, V. 2020. 'Green'approach for obtaining stable pectin-capped silver nanoparticles: Physico-chemical characterization and antibacterial activity. Colloids Surf. Physicochem. Eng. Aspects. 585, 124141 https://doi.org/10.1016/j.colsurfa.2019.124141
- Rivas Aiello, M.B., Castrogiovanni, D., Parisi, J., Azcarate, J.C., Garcia Einschlag, F.S., Gensch, T., Bosio, G.N., and Martire, D.O. 2018. Photodynamic therapy in HeLa cells incubated with riboflavin and pectin-coated silver nanoparticles. Photochem. Photobiol. 94, 1159-1166 https://doi.org/10.1111/php.12974
- Attallah, O.A., Shetta, A., Elshishiny, F., and Mamdouh, W. 2020. Essential oil loaded pectin/chitosan nanoparticles preparation and optimization via Box-Behnken design against MCF-7 breast cancer cell lines. RSC Advances. 10, 8703-8708 https://doi.org/10.1039/C9RA10204C
- Chinnaiyan, S.K., Deivasigamani, K., and Gadela, V.R. 2019. Combined synergetic potential of metformin loaded pectin-chitosan biohybrids nanoparticle for NIDDM. Int. J. Biol. Macromol. 125, 278-289 https://doi.org/10.1016/j.ijbiomac.2018.12.009
- Wang, H., Yang, B., and Sun, H. 2017. Pectin-Chitosan polyelectrolyte complex nanoparticles for encapsulation and controlled release of nisin. American Journal of Polymer Science and Technology. 3, 82-88 https://doi.org/10.11648/j.ajpst.20170305.11
- Kiadeh, S.Z.H., Ghaee, A., Farokhi, M., Nourmohammadi, J., Bahi, A., and Ko, F.K. 2021. Electrospun pectin/modified copper-based metal-organic framework (MOF) nanofibers as a drug delivery system. Int. J. Biol. Macromol. 173, 351-365 https://doi.org/10.1016/j.ijbiomac.2021.01.058
- Shi, X., Cui, S., Song, X., Rickel, A.P., Sanyour, H.J., Zheng, J., Hu, J., Hong, Z., Zhou, Y., and Liu, Y. 2020. Gelatin-crosslinked pectin nanofiber mats allowing cell infiltration. Mater. Sci. Eng. C Mater Biol Appl. 112, 110941 https://doi.org/10.1016/j.msec.2020.110941
- Akinalan Balik, B. and Argin, S. 2020. Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends. J. Appl. Polym. Sci. 137, 48294 https://doi.org/10.1002/app.48294
- McCune, D., Guo, X., Shi, T., Stealey, S., Antrobus, R., Kaltchev, M., Chen, J., Kumpaty, S., Hua, X., and Ren, W. 2018. Electrospinning pectin-based nanofibers: a parametric and cross-linker study. Applied Nanoscience. 8, 33-40 https://doi.org/10.1007/s13204-018-0649-4
- Li, N., Xue, F., Zhang, H., Sanyour, H.J., Rickel, A.P., Uttecht, A., Fanta, B., Hu, J., and Hong, Z. 2019. Fabrication and characterization of pectin hydrogel nanofiber scaffolds for differentiation of mesenchymal stem cells into vascular cells. ACS Biomaterials Science & Engineering. 5, 6511-6519 https://doi.org/10.1021/acsbiomaterials.9b01178
- Hamzah, M.S.A., Ng, C., Sukor, J.A., Ali, K.S.M., and Nayan, N.H.M. 2021. Electrospinning, Preparation and Characterization of Polyvinylidene Fluoride/Pectin Electrospun Loaded with Benzalkonium Chloride as a Drug Reservoirs. Journal of Mechanical Engineering. 18, 39-51
- Alipour, R., Khorshidi, A., Shojaei, A.F., Mashayekhi, F., and Moghaddam, M.J.M. 2019. Skin wound healing acceleration by Ag nanoparticles embedded in PVA/PVP/Pectin/Mafenide acetate composite nanofibers. Polym. Test. 79, 106022 https://doi.org/10.1016/j.polymertesting.2019.106022
- Chan, S.Y., Chan, B.Q.Y., Liu, Z., Parikh, B.H., Zhang, K., Lin, Q., Su, X., Kai, D., Choo, W.S., and Young, D.J. 2017. Electrospun pectin-polyhydroxybutyrate nano fibers for retinal tissue engineering. ACS omega. 2, 8959-8968 https://doi.org/10.1021/acsomega.7b01604
- Patra, N., M. Salerno, and M. Cernik. 2017. Electrospun polyvinyl alcohol/pectin composite nanofiber. In: Electro spun Nanofibers, Woodhead, Elsevier Publishers, pp 599-608.
- Ahmed, E.M., Aggor, F.S., Awad, A.M., and El-Aref, A.T. 2013. An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel. Carbohydr. Polym. 91, 693-698 https://doi.org/10.1016/j.carbpol.2012.08.056
- Oh, S.-T., Kim, S.-H., Jeong, H.-Y., Lee, J.-M., Cho, J.W., and Park, J.-S. 2013. The mechanical properties of polyurethane foam wound dressing hybridized with alginate hydrogel and jute fiber. Fibers and Polymers. 14, 173-181 https://doi.org/10.1007/s12221-013-0173-9
- Gyles, D.A., Castro, L.D., Silva Jr, J.O.C., and Ribeiro-Costa, R.M. 2017. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur. Polym. J. 88, 373-392 https://doi.org/10.1016/j.eurpolymj.2017.01.027
- Pollot, B.E., Rathbone, C.R., Wenke, J.C., and Guda, T. 2018. Natural polymeric hydrogel evaluation for skeletal muscle tissue engineering. J. Biomed. Mater. Res. B. Appl. Biomater. 106, 672-679 https://doi.org/10.1002/jbm.b.33859
- Klein, T.J., Rizzi, S.C., Schrobback, K., Reichert, J.C., Jeon, J.E., Crawford, R.W., and Hutmacher, D.W. 2010. Long-term effects of hydrogel properties on human chondrocyte behavior. Soft Matter. 6, 5175-5183 https://doi.org/10.1039/c0sm00229a
- Parlato, M., Reichert, S., Barney, N., and Murphy, W.L. 2014. Poly (ethylene glycol) hydrogels with adaptable mechanical and degradation properties for use in biomedical applications. Macromol. Biosci. 14, 687-698 https://doi.org/10.1002/mabi.201300418
- Ozay, O., Ekici, S., Baran, Y., Kubilay, S., Aktas, N., and Sahiner, N. 2010. Utilization of magnetic hydrogels in the separation of toxic metal ions from aqueous environments. Desalination. 260, 57-64 https://doi.org/10.1016/j.desal.2010.04.067
- Kim, J.J. and Park, K. 1998. Smart hydrogels for biosepa ration. Bioseparation. 7, 177-184 https://doi.org/10.1023/A:1008050124949
- Park, H. and Park, K. 1996. Hydrogels in bioapplications.
- Ahmed, E.M. 2015. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 6, 105-121 https://doi.org/10.1016/j.jare.2013.07.006
- Agaba, H., Orikiriza, L.J., Obua, J., Kabasa, J.D., Worbes, M., and Huttermann, A. 2011. Hydrogel amendment to sandy soil reduces irrigation frequency and improves the biomass of Agrostis stolonifera. Agricultural Sciences. 2, 544 https://doi.org/10.4236/as.2011.24071
- Ullah, F., Othman, M.B.H., Javed, F., Ahmad, Z., and Akil, H.M. 2015. Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C Mater Biol Appl. 57, 414-433 https://doi.org/10.1016/j.msec.2015.07.053
- Vityazev, F.V., Khramova, D.S., Saveliev, N.Y., Ipatova, E.A., Burkov, A.A., Beloserov, V.S., Belyi, V.A., Kononov, L.O., Martinson, E.A., and Litvinets, S.G. 2020. Pectin-glycerol gel beads: Preparation, characterization and swelling behaviour. Carbohydr. Polym. 238, 116166 https://doi.org/10.1016/j.carbpol.2020.116166
- Brett, D. 2008. A review of collagen and collagen-based wound dressings. Wounds. 20, 347-356
- Chandika, P., Ko, S.-C., Oh, G.-W., Heo, S.-Y., Nguyen, V.-T., Jeon, Y.-J., Lee, B., Jang, C.H., Kim, G., and Park, W.S. 2015. Fish collagen/alginate/chitooligosaccha rides integrated scaffold for skin tissue regeneration application. Int. J. Biol. Macromol. 81, 504-513 https://doi.org/10.1016/j.ijbiomac.2015.08.038
- Duconseille, A., Astruc, T., Quintana, N., Meersman, F., and Sante-Lhoutellier, V. 2015. Gelatin structure and composition linked to hard capsule dissolution: A review. Food hydrocolloids. 43, 360-376 https://doi.org/10.1016/j.foodhyd.2014.06.006
- Shukla, S.K., Mishra, A.K., Arotiba, O.A., and Mamba, B.B. 2013. Chitosan-based nanomaterials: A state-of-the-art review. Int. J. Biol. Macromol. 59, 46-58 https://doi.org/10.1016/j.ijbiomac.2013.04.043
- Pedroni, V., Schulz, P., Gschaider, M., and Andreucetti, N. 2003. Chitosan structure in aqueous solution. Colloid and Polymer Science. 282, 100-102 https://doi.org/10.1007/s00396-003-0965-3
- Muzzarelli, R. and Muzzarelli, C. 2005. Chitosan chemistry: relevance to the biomedical sciences. Polysaccharides I. 151-209
- Mima, S., Miya, M., Iwamoto, R., and Yoshikawa, S. 1983. Highly deacetylated chitosan and its properties. J. Appl. Polym. Sci. 28, 1909-1917 https://doi.org/10.1002/app.1983.070280607
- Wang, B., Wan, Y., Zheng, Y., Lee, X., Liu, T., Yu, Z., Huang, J., Ok, Y.S., Chen, J., and Gao, B. 2019. Alginate-based composites for environmental applications: a critical review. Crit. Rev. Environ. Sci. Technol. 49, 318-356 https://doi.org/10.1080/10643389.2018.1547621
- Aguero, L., Zaldivar-Silva, D., Pena, L., and Dias, M.L. 2017. Alginate microparticles as oral colon drug delivery device: A review. Carbohydr. Polym. 168, 32-43 https://doi.org/10.1016/j.carbpol.2017.03.033
- Foster, E.J., Moon, R.J., Agarwal, U.P., Bortner, M.J., Bras, J., Camarero-Espinosa, S., Chan, K.J., Clift, M.J., Cranston, E.D., and Eichhorn, S.J. 2018. Current characterization methods for cellulose nanomaterials. Chemical Society Reviews. 47, 2609-2679 https://doi.org/10.1039/C6CS00895J
- Sharma, A., Thakur, M., Bhattacharya, M., Mandal, T., and Goswami, S. 2019. Commercial application of cellulose nano-composites-A review. Biotechnology Reports. 21, e00316 https://doi.org/10.1016/j.btre.2019.e00316
- Slavutsky, A.M., Bertuzzi, M.A., Armada, M., Garcia, M.G., and Ochoa, N.A. 2014. Preparation and characterization of montmorillonite/brea gum nanocomposites films. Food Hydrocolloids. 35, 270-278 https://doi.org/10.1016/j.foodhyd.2013.06.008
- Safdar, B., Pang, Z., Liu, X., Jatoi, M.A., Mehmood, A., Rashid, M.T., Ali, N., and Naveed, M. 2019. Flaxseed gum: Extraction, bioactive composition, structural characterization, and its potential antioxidant activity. J. Food Biochem. 43, e13014
- SANCHEZ GIL, Yaritza M. 2014. Characterization and rheological properties of Camelina sativa gum: interactions with xanthan gum, guar gum, and locust bean gum. PhD Thesis. Kansas State University.
- Nishinari, K., Fang, Y., Guo, S., and Phillips, G. 2014. Soy proteins: A review on composition, aggregation and emulsification. Food hydrocolloids. 39, 301-318 https://doi.org/10.1016/j.foodhyd.2014.01.013
- Fernandez-Fernandez, M., Sanroman, M.A., and Moldes, D. 2013. Recent developments and applications of immobilized laccase. Biotechnol. Adv. 31, 1808-1825 https://doi.org/10.1016/j.biotechadv.2012.02.013
- Kundu, B., Rajkhowa, R., Kundu, S.C., and Wang, X. 2013. Silk fibroin biomaterials for tissue regenerations. Adv. Drug Del. Rev. 65, 457-470 https://doi.org/10.1016/j.addr.2012.09.043
- Bertoft, E. 2017. Understanding starch structure: Recent progress. Agronomy. 7, 56 https://doi.org/10.3390/agronomy7030056
- Kim, M.-S., Oh, G.-W., Jang, Y.-M., Ko, S.-C., Park, W.-S., Choi, I.-W., Kim, Y.-M., and Jung, W.-K. 2020. Antimicrobial hydrogels based on PVA and diphlorethoh ydroxycarmalol (DPHC) derived from brown alga Ishige okamurae: An in vitro and in vivo study for wound dressing application. Mater. Sci. Eng. C Mater Biol Appl. 107, 110352 https://doi.org/10.1016/j.msec.2019.110352
- Chabot, V., Higgins, D., Yu, A., Xiao, X., Chen, Z., and Zhang, J. 2014. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7, 1564-1596 https://doi.org/10.1039/c3ee43385d
- Chung, C., Kim, Y.-K., Shin, D., Ryoo, S.-R., Hong, B.H., and Min, D.-H. 2013. Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46, 2211-2224 https://doi.org/10.1021/ar300159f
- Shamaila, S., Sajjad, A.K.L., Farooqi, S.A., Jabeen, N., Majeed, S., and Farooq, I. 2016. Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl. Mater. Today. 5, 150-199 https://doi.org/10.1016/j.apmt.2016.09.009
- Zhang, H., Han, J., and Yang, B. 2010. Structural fabrication and functional modulation of nanoparticle-polymer composites. Adv. Funct. Mater. 20, 1533-1550 https://doi.org/10.1002/adfm.201000089
- El-Sayed, A. and Kamel, M. 2020. Advanced applications of nanotechnology in veterinary medicine. Environ. Sci. Pollut. Res. 27, 19073-19086 https://doi.org/10.1007/s11356-018-3913-y
- Yezdani, U., Khan, M.G., Kushwah, N., Verma, A., and Khan, F. 2018. APPLICATION OF NANOTECHN OLOGY IN DIAGNOSIS AND TREATMENT OF VARIOUS DISEASES AND ITS FUTURE ADVANCES IN MEDICINE. World J Pharm Pharm Sci. 7, 1611-163 3
- Emerich, D.F. and Thanos, C.G. 2003. Nanotechnology and medicine. Expert Opin. Biol. Ther. 3, 655-663 https://doi.org/10.1517/eobt.3.4.655.21202
- Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P., and Bannerjee, S.K. 2012. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2, 2 https://doi.org/10.4103/2230-973X.96920
- Rajendran, N.K., Kumar, S.S.D., Houreld, N.N., and Abrahamse, H. 2018. A review on nanoparticle based treatment for wound healing. J. Drug. Deliv. Sci. Technol. 44, 421-430 https://doi.org/10.1016/j.jddst.2018.01.009
- Mohanraj, V. and Chen, Y. 2006. Nanoparticles-a review. Trop J Pharm Res. 5, 561-573
- Guo, Y., Liu, Z., An, H., Li, M., and Hu, J. 2005. Nano-structure and properties of maize zein studied by atomic force microscopy. J. Cereal Sci. 41, 277-281 https://doi.org/10.1016/j.jcs.2004.12.005
- Corradini, E., Curti, P.S., Meniqueti, A.B., Martins, A. F., Rubira, A.F., and Muniz, E.C. 2014. Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials. Int. J. Mol. Sci. 15, 22438-22470 https://doi.org/10.3390/ijms151222438
- Cobley, C.M., Chen, J., Cho, E.C., Wang, L.V., and Xia, Y. 2011. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 40, 44-56 https://doi.org/10.1039/B821763G
- Borker, S. and Pokharkar, V. 2018. Engineering of pectin-capped gold nanoparticles for delivery of doxorubicin to hepatocarcinoma cells: An insight into mechanism of cellular uptake. Artif. Cells. Nanomed. Biotechnol. 46, 826-835 https://doi.org/10.1080/21691401.2018.1470525
- Burdusel, A.-C., Gherasim, O., Grumezescu, A.M., Mogoanta, L., Ficai, A., and Andronescu, E. 2018. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials. 8, 681 https://doi.org/10.3390/nano8090681
- Rieger, K.A., Birch, N.P., and Schiffman, J.D. 2013. Designing electrospun nanofiber mats to promote wound healing-a review. J. Mater. Chem. B. 1, 4531-4541 https://doi.org/10.1039/c3tb20795a
- Oh, G.-W., Ko, S.-C., Je, J.-Y., Kim, Y.-M., Oh, J., and Jung, W.-K. 2016. Fabrication, characterization and determination of biological activities of poly (ε-caprolactone)/chitosan-caffeic acid composite fibrous mat for wound dressing application. Int. J. Biol. Macromol. 93, 1549-1558 https://doi.org/10.1016/j.ijbiomac.2016.06.065
- Chandika, P., Oh, G.-W., Heo, S.-Y., Kim, S.-C., Kim, T.-H., Kim, M.-S., and Jung, W.-K. 2021. Electrospun porous bilayer nano-fibrous fish collagen/PCL bio-composite scaffolds with covalently cross-linked chitooligosaccharides for full-thickness wound-healing applications. Mater. Sci. Eng. C Mater Biol Appl. 121, 111871 https://doi.org/10.1016/j.msec.2021.111871
- Szentivanyi, A.L., Zernetsch, H., Menzel, H., and Glasmacher, B. 2011. A review of developments in electrospinning technology: New opportunities for the design of artificial tissue structures. Int. J. Artif. Organs. 34, 986-997 https://doi.org/10.5301/ijao.5000062
- Cheng, H., Yang, X., Che, X., Yang, M., and Zhai, G. 2018. Biomedical application and controlled drug release of electrospun fibrous materials. Mater. Sci. Eng. C Mater Biol Appl. 90, 750-763 https://doi.org/10.1016/j.msec.2018.05.007
- Teo, W.E. and Ramakrishna, S. 2006. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 17, R89 https://doi.org/10.1088/0957-4484/17/14/R01
- Yu, M., Ahn, K.H., and Lee, S.J. 2016. Design optimization of ink in electrohydrodynamic jet printing: Effect of viscoelasticity on the formation of Taylor cone jet. Materials & Design. 89, 109-115 https://doi.org/10.1016/j.matdes.2015.09.141
- Ma, L., Deng, L., and Chen, J. 2014. Applications of poly (ethylene oxide) in controlled release tablet systems: a review. Drug Dev. Ind. Pharm. 40, 845-851 https://doi.org/10.3109/03639045.2013.831438