DOI QR코드

DOI QR Code

New conceptual approaches toward dentin regeneration using the drug repositioning strategy with Wnt signaling pathways

  • Lee, Eui-Seon (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • Kim, Tae-Young (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • Aryal, Yam Prasad (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • Kim, Kihyun (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • Byun, Seongsoo (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • Song, Dongju (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • Shin, Yejin (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • Lee, Dany (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • Lee, Jooheon (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • Jung, Gilyoung (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • Chi, Seunghoon (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • Choi, Yoolim (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • Lee, Youngkyun (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University) ;
  • An, Chang-Hyeon (Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University) ;
  • Kim, Jae-Young (Department of Biochemistry, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University)
  • 투고 : 2021.01.21
  • 심사 : 2021.03.30
  • 발행 : 2021.06.30

초록

This study summarizes the recent cutting-edge approaches for dentin regeneration that still do not offer adequate solutions. Tertiary dentin is formed when odontoblasts are directly affected by various stimuli. Recent preclinical studies have reported that stimulation of the Wnt/β-catenin signaling pathway could facilitate the formation of reparative dentin and thereby aid in the structural and functional development of the tertiary dentin. A range of signaling pathways, including the Wnt/β-catenin pathway, is activated when dental tissues are damaged and the pulp is exposed. The application of small molecules for dentin regeneration has been suggested as a drug repositioning approach. This study reviews the role of Wnt signaling in tooth formation, particularly dentin formation and dentin regeneration. In addition, the application of the drug repositioning strategy to facilitate the development of new drugs for dentin regeneration has been discussed in this study.

키워드

참고문헌

  1. Hillson S. Tooth development in human evolution and bioarchaeology. Cambridge: Cambridge University Press; 2014. 307 p.
  2. Nanci A. Ten Cate's oral histology - e-book: development, structure, and function. 9th ed. St. Louis: Elsevier Health Sciences; 2017.
  3. Goldberg M, Kulkarni AB, Young M, Boskey A. Dentin: structure, composition and mineralization. Front Biosci (Elite Ed) 2011;3:711-35. doi: 10.2741/e281.
  4. Lee JH, Lee DS, Choung HW, Shon WJ, Seo BM, Lee EH, Cho JY, Park JC. Odontogenic differentiation of human dental pulp stem cells induced by preameloblast-derived factors. Biomaterials 2011;32:9696-706. doi: 10.1016/j.biomaterials. 2011.09.007.
  5. Seo YM, Park SJ, Lee HK, Park JC. Copine-7 binds to the cell surface receptor, nucleolin, and regulates ciliogenesis and Dspp expression during odontoblast differentiation. Sci Rep 2017;7:11283. doi: 10.1038/s41598-017-11641-y.
  6. Park SJ, Lee HK, Seo YM, Son C, Bae HS, Park JC. Dentin sialophosphoprotein expression in enamel is regulated by Copine-7, a preameloblast-derived factor. Arch Oral Biol 2018; 86:131-7. doi: 10.1016/j.archoralbio.2017.12.004.
  7. Lee YS, Park YH, Lee DS, Seo YM, Lee JH, Park JH, Choung HW, Park SH, Shon WJ, Park JC. Tubular dentin regeneration using a CPNE7-derived functional peptide. Materials (Basel) 2020;13:4618. doi: 10.3390/ma13204618.
  8. Oh HJ, Choung HW, Lee HK, Park SJ, Lee JH, Lee DS, Seo BM, Park JC. CPNE7, a preameloblast-derived factor, regulates odontoblastic differentiation of mesenchymal stem cells. Biomaterials 2015;37:208-17. doi: 10.1016/j.biomaterials.2014.10.016.
  9. Jung JK, Gwon GJ, Neupane S, Sohn WJ, Kim KR, Kim JY, An SY, Kwon TY, An CH, Lee Y, Kim JY, Ha JH. Bortezomib facilitates reparative dentin formation after pulp access cavity preparation in mouse molar. J Endod 2017;43:2041-7. doi: 10.1016/j.joen.2017.07.018.
  10. Karakida T, Onuma K, Saito MM, Yamamoto R, Chiba T, Chiba R, Hidaka Y, Fujii-Abe K, Kawahara H, Yamakoshi Y. Potential for drug repositioning of midazolam for dentin regeneration. Int J Mol Sci 2019;20:670. doi: 10.3390/ijms20030670.
  11. Bae CH, Kim TH, Ko SO, Lee JC, Yang X, Cho ES. Wntless regulates dentin apposition and root elongation in the mandibular molar. J Dent Res 2015;94:439-45. doi: 10.1177/0022034514567198.
  12. Liu F, Chu EY, Watt B, Zhang Y, Gallant NM, Andl T, Yang SH, Lu MM, Piccolo S, Schmidt-Ullrich R, Taketo MM, Morrisey EE, Atit R, Dlugosz AA, Millar SE. Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol 2008;313:210-24. doi: 10.1016/j.ydbio.2007.10.016.
  13. Liu F, Millar SE. Wnt/beta-catenin signaling in oral tissue development and disease. J Dent Res 2010;89:318-30. doi: 10.1177/0022034510363373.
  14. Jarvinen E, Salazar-Ciudad I, Birchmeier W, Taketo MM, Jernvall J, Thesleff I. Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 2006;103:18627-32. doi: 10.1073/pnas.0607289103.
  15. He Q, Yan H, Wo D, Liu J, Liu P, Zhang J, Li L, Zhou B, Ge J, Li H, Liu S, Zhu W. Wnt3a suppresses Wnt/β-catenin signaling and cancer cell proliferation following serum deprivation. Exp Cell Res 2016;341:32-41. doi: 10.1016/j.yexcr.2015.11.025.
  16. Wu X, Li Y, Wang F, Hu L, Li Y, Wang J, Zhang C, Wang S. Spatiotemporal expression of Wnt/β-catenin signaling during morphogenesis and odontogenesis of deciduous molar in miniature pig. Int J Biol Sci 2017;13:1082-91. doi: 10.7150/ijbs.20905.
  17. Tamura M, Nemoto E. Role of the Wnt signaling molecules in the tooth. Jpn Dent Sci Rev 2016;52:75-83. doi: 10.1016/j.jdsr.2016.04.001.
  18. Bae CH, Lee JY, Kim TH, Baek JA, Lee JC, Yang X, Taketo MM, Jiang R, Cho ES. Excessive Wnt/β-catenin signaling disturbs tooth-root formation. J Periodontal Res 2013;48:405-10. doi: 10.1111/jre.12018.
  19. Kim TH, Lee JY, Baek JA, Lee JC, Yang X, Taketo MM, Jiang R, Cho ES. Constitutive stabilization of β-catenin in the dental mesenchyme leads to excessive dentin and cementum formation. Biochem Biophys Res Commun 2011;412:549-55. doi: 10.1016/j.bbrc.2011.07.116.
  20. Kim TH, Bae CH, Lee JC, Ko SO, Yang X, Jiang R, Cho ES. β-catenin is required in odontoblasts for tooth root formation. J Dent Res 2013;92:215-21. doi: 10.1177/0022034512470137.
  21. Zhang R, Teng Y, Zhu L, Lin J, Yang X, Yang G, Li T. Odontoblast β-catenin signaling regulates fenestration of mouse Hertwig's epithelial root sheath. Sci China Life Sci 2015;58: 876-81. doi: 10.1007/s11427-015-4882-8.
  22. Lim WH, Liu B, Cheng D, Hunter DJ, Zhong Z, Ramos DM, Williams BO, Sharpe PT, Bardet C, Mah SJ, Helms JA. Wnt signaling regulates pulp volume and dentin thickness. J Bone Miner Res 2014;29:892-901. doi: 10.1002/jbmr.2088.
  23. Kim SG, Zheng Y, Zhou J, Chen M, Embree MC, Song K, Jiang N, Mao JJ. Dentin and dental pulp regeneration by the patient's endogenous cells. Endod Topics 2013;28:106-17. doi: 10.1111/etp.12037.
  24. Mao JJ, Prockop DJ. Stem cells in the face: tooth regeneration and beyond. Cell Stem Cell 2012;11:291-301. doi: 10.1016/j.stem.2012.08.010.
  25. Barzilay R, Melamed E, Offen D. Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells 2009;27:2509-15. doi: 10.1002/stem.172.
  26. Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 2010; 376:440-8. doi: 10.1016/S0140-6736(10)60668-X.
  27. Quesenberry PJ, Becker PS. Stem cell homing: rolling, crawling, and nesting. Proc Natl Acad Sci U S A 1998;95:15155-7. doi: 10.1073/pnas.95.26.15155.
  28. Kim JY, Xin X, Moioli EK, Chung J, Lee CH, Chen M, Fu SY, Koch PD, Mao JJ. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A 2010;16: 3023-31. doi: 10.1089/ten.TEA.2010.0181.
  29. Morotomi T, Washio A, Kitamura C. Current and future options for dental pulp therapy. Jpn Dent Sci Rev 2019;55:5-11. doi: 10.1016/j.jdsr.2018.09.001.
  30. Duncan HF, Kobayashi Y, Shimizu E. Growth factors and cell homing in dental tissue regeneration. Curr Oral Health Rep 2018;5 z:276-85. doi: 10.1007/s40496-018-0194-y.
  31. Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S. Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol 2009;219:667-76. doi: 10.1002/jcp.21710.
  32. Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S, Wang S, Shi S. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther 2010; 1:5. doi: 10.1186/scrt5.
  33. Ding G, Wang W, Liu Y, An Y, Zhang C, Shi S, Wang S. Effect of cryopreservation on biological and immunological properties of stem cells from apical papilla. J Cell Physiol 2010;223:415-22. doi: 10.1002/jcp.22050.
  34. Jung C, Kim S, Sun T, Cho YB, Song M. Pulp-dentin regeneration: current approaches and challenges. J Tissue Eng 2019;10:2041731418819263. doi: 10.1177/2041731418819263.
  35. Araujo PRS, Silva LB, Neto APDS, Almeida de Arruda JA, Alvares PR, Sobral APV, Junior SA, Leao JC, Braz da Silva R, Sampaio GC. Pulp revascularization: a literature review. Open Dent J 2017;10:48-56. doi: 10.2174/1874210601711010048.
  36. Simon S, Smith AJ. Regenerative endodontics. Br Dent J 2014;216:E13. doi: 10.1038/sj.bdj.2014.243.
  37. Rutherford RB, Gu K. Treatment of inflamed ferret dental pulps with recombinant bone morphogenetic protein-7. Eur J Oral Sci 2000;108:202-6. doi: 10.1034/j.1600-0722.2000.108003202.x.
  38. Chatzistavrou X, Papagerakis S, Ma PX, Papagerakis P. Innovative approaches to regenerate enamel and dentin. Int J Dent 2012;2012:856470. doi: 10.1155/2012/856470.
  39. Nowicka A, Wilk G, Lipski M, Kolecki J, BuczkowskaRadlinska J. Tomographic evaluation of reparative dentin formation after direct pulp capping with Ca(OH)2, MTA, Biodentine, and dentin bonding system in human teeth. J Endod 2015;41:1234-40. doi: 10.1016/j.joen.2015.03.017.
  40. Babb R, Chandrasekaran D, Carvalho Moreno Neves V, Sharpe PT. Axin2-expressing cells differentiate into reparative odontoblasts via autocrine Wnt/β-catenin signaling in response to tooth damage. Sci Rep 2017;7:3102. doi: 10.1038/s41598-017-03145-6.
  41. Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets 2011;11:239-53. doi: 10.2174/156800911794519752.
  42. Boccadoro M, Morgan G, Cavenagh J. Preclinical evaluation of the proteasome inhibitor bortezomib in cancer therapy. Cancer Cell Int 2005;5:18. doi: 10.1186/1475-2867-5-18.
  43. Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 2015;148:114-31. doi: 10.1016/j.pharmthera.2014.11.016.
  44. Neves VC, Babb R, Chandrasekaran D, Sharpe PT. Promotion of natural tooth repair by small molecule GSK3 antagonists. Sci Rep 2017;7:39654. doi: 10.1038/srep39654.
  45. Zaugg LK, Banu A, Walther AR, Chandrasekaran D, Babb RC, Salzlechner C, Hedegaard MAB, Gentleman E, Sharpe PT. Translation approach for dentine regeneration using GSK3 antagonists. J Dent Res 2020;99:544-51. doi: 10.1177/0022034520908593.
  46. Birjandi AA, Suzano FR, Sharpe PT. Drug repurposing in dentistry; towards application of small molecules in dentin repair. Int J Mol Sci 2020;21:6394. doi: 10.3390/ijms21176394.
  47. Hwang YC, Hwang IN, Oh WM, Park JC, Lee DS, Son HH. Influence of TGF-beta1 on the expression of BSP, DSP, TGF-beta1 receptor I and Smad proteins during reparative dentinogenesis. J Mol Histol 2008;39:153-60. doi: 10.1007/s10735-007-9148-8.
  48. Choung HW, Lee DS, Lee JH, Shon WJ, Lee JH, Ku Y, Park JC. Tertiary dentin formation after indirect pulp capping using protein CPNE7. J Dent Res 2016;95:906-12. doi: 10.1177/0022034516639919.