References
- Alqado, T.E. and Nikolakopoulos, G. (2016), "Posicast control of structures using MR dampers", Struct. Control Health Monit., 23(8), 1121-1134. https://doi.org/10.1002/stc.1832.
- Altieri, D., Tubaldi, E., De Angelis, M., Patelli, E. and Dall'Asta, A. (2018), "Reliability-based optimal design of nonlinear viscous dampers for the seismic protection of structural systems", B. Earthq. Eng., 16(2), 963-982. https://doi.org/10.1007/s10518-017-0233-4.
- ASCE/SEI 41-17. (2017), "Seismic evaluation and retrofit rehabilitation of existing buildings", https://doi.org/10.1061/9780784414859.
- ASCE/SEI 7-10. (2010), "Minimum design loads for buildings and other structures", https://doi.org/10.1061/9780784412916.
- ASCE/SEI 7-16. (2017), "Minimum design loads and associated criteria for buildings and other structures", https://doi.org/10.1061/9780784414248.
- Bakhshinezhad, S. and Mohebbi, M. (2019a), "Multiple failure criteria-based fragility curves for structures equipped with SATMDs" Earthq. Struct., 17(5), 463-475. https://doi.org/10.12989/eas.2019.17.5.463.
- Bakhshinezhad, S. and Mohebbi, M. (2019b), "Fragility curves for structures equipped with optimal SATMDs" Int. J. Optim. Civil. Eng., 9(3), 437-455.
- Bakhshinezhad, S. and Mohebbi, M. (2020), "Multi-objective optimal design of semi-active fluid viscous dampers for nonlinear structures using NSGA-II", Struct., 24, 463-475. https://doi.org/10.1016/j.istruc.2020.02.004.
- Bakhshinezhad, S. and Mohebbi, M. (2021), "Multiple failure function based fragility curves for structures equipped with TMD", Earthq. Eng. Eng. Vib., 20, 471-482. https://doi.org/10.1007/s11803-021-2032-9.
- Barnawi, W.T. (2008), "Seismic fragility relationships for civil structures retrofitted with semi-active devices", Master's thesis, Washington University, Missouri, United States of America.
- Barnawi, W.T. and Dyke, S.J. (2014), "Seismic fragility relationships of a cable-stayed bridge equipped with response modification systems", J. Bridge Eng., 19(8), A4013003. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000468.
- Bathaei, A., Zahrai, S.M. and Ramezani, M. (2017), "Semi-active seismic control of an 11-DOF building model with TMD+MR damper using type-1 and -2 fuzzy algorithms", J. Vib. Control, 24(13), 2938-2953. https://doi.org/10.1177/1077546317696369.
- Cardone, D., Perrone, G. and Piesco, V. (2019), "Developing collapse fragility curves for base-isolated buildings", Earthq. Eng. Struct. Dyn., 48(1), 78-102. https://doi.org/10.1002/eqe.3126.
- Castaldo, P., Amendola, G. and Palazzo, B. (2017), "Seismic fragility and reliability of structures isolated by friction pendulum devices: seismic reliability-based design (SRBD)", Earthq. Eng. Struct. Dyn., 46(3), 425-446. https://doi.org/10.1002/eqe.2798.
- Cha, Y.J. and Bai, J.W. (2016), "Seismic fragility estimates of a moment-resisting frame building controlled by MR dampers using performance-based design", Eng. Struct., 116, 192-202. https://doi.org/10.1016/j.engstruct.2016.02.055.
- Cha, Y.J., Zhang, J., Agrawal, A.K. and Dong, B. (2013), "Comparative studies of semiactive control strategies for MR dampers: pure simulation and real-time hybrid tests", J. Struct. Eng., 139(7): 1237-1248. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000639.
- Cimellaro, G.P. and Reinhorn, A.M. (2011), "Multidimensional performance limit state for hazard fragility functions", J. Eng. Mech., 137(1), 47-60. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000201.
- Cornell, C.A., Jalayer, F., Hamburger, R.O. and Foutch, D.A. (2002), "Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines", J. Struct. Eng., 128(4), 526-533. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(526).
- Dall'Asta, A., Scozzese, F., Ragni, L. and Tubaldi, E. (2017), "Effect of the damper property variability on the seismic reliability of linear systems equipped with viscous dampers", B. Earthq. Eng., 15(11), 5025-5053. https://doi.org/10.1007/s10518-017-0169-8.
- De Risi, R., Goda, K. and Tesfamariam, S. (2019), "Multidimensional damage measure for seismic reliability analysis", Struct. Saf., 78, 1-11. https://doi.org/10.1016/j.strusafe.2018.12.002.
- Ditlevsen, O. and Madsen, H.O. (1996), "Structural Reliability Methods", 1st Edition, John Wiley & Sons Ltd.
- Dolsek, M. (2009), "Incremental dynamic analysis with consideration of modeling uncertainties", Earthq. Eng. Struct. Dyn., 38(6), 805-825. https://doi.org/10.1002/eqe.869.
- Dyke, S.J., Spencer Jr, B.F., Sain, M.K. and Carlson, J.D. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5(5), 565-575. https://doi.org/10.1088/0964-1726/5/5/006.
- Eads, L., Miranda, E. and Lignos, D.G. (2015), "Average spectral acceleration as an intensity measure for collapse risk assessment", Earthq. Eng. Struct. Dyn., 44(12), 2057-2073. https://doi.org/10.1002/eqe.2575.
- El-Khoury, O., Kim, C., Shafieezadeh, A., Hur, J.E., Heo, G.H. (2018), "Mitigation of the seismic response of multi-span bridges using MR dampers: Experimental study of a new SMCbased controller", J. Sound Vib., 24(1), 83-99. https://doi.org/10.1177/1077546316633540.
- Ellingwood, B., Galambos, T.V., MacGregor, J.G. and Cornell, C.A. (1980), "Development of a probability-based load criterion for American national standard A58", National Bureau of Standards, Washington, DC.
- EN 15129. (2010), "Anti-seismic devices", European Committee for Standardization.
- Favvata, M.J., Naoum, M.C. and Karayannis, C.G. (2013), "Limit states of RC structures with first floor irregularities", Struct. Eng. Mech., 47(6), 791-818. https://doi.org/10.12989/sem.2013.47.6.791.
- FEMA-355. (2000), "State of the art report on systems performance of steel moment frames subjected to earthquake ground shaking", The SAC joint venture for the Federal Emergency Management Agency, Washington, DC.
- FEMA-356. (2000), "Prestandard and commentary for seismic rehabilitation of buildings", Washington DC: FEMA Publication 356.
- Field, E.H., Jordan, T.H. and Cornell, C.A. (2003), "OpenSHA: a developing community-modeling environment for seismic hazard analysis", Seismol. Res. Lett., 74(4), 406-419. https://doi.org/10.1785/gssrl.74.4.406.
- Fu, W., Zhang, C., Li, M. and Duan, C. (2019), "Experimental investigation on semi-active control of base isolation system using magnetorheological dampers for concrete frame structure", Appl. Sci., 9(18), 3866. https://doi.org/10.3390/app9183866.
- Ghaffari, A. and Mohammadi, R.K. (2019), "Comprehensive nonlinear seismic performance assessment of MR damper controlled system using virtual real-time hybrid simulation", Struct. Des. Tall Spec. Buildings, 28(8), e1606. https://doi.org/10.1002/tal.1606.
- Guo, A.X., Xu, Y.L. and Wu, B. (2002), "Seismic reliability analysis of hysteretic structure with viscoelastic dampers", Eng. Struct., 24(3), 373-83. https://doi.org/10.1016/S0141-0296(01)00103-1.
- Hadidi, A., Azar, B.F. and Shirgir, S. (2019), "Reliability assessment of semi-active control of structures with MR damper", Earthq. Struct., 17(2), 131-141. https://doi.org/10.12989/eas.2019.17.2.131.
- Han, X., Huang, D., Ji, J. and Lin, J. (2019), "Component deformation-based seismic design method for RC structure and engineering application" Earthq. Struct., 16(5), 575-588. https://doi.org/10.12989/eas.2019.16.5.575.
- Hazus-MH. (2003), "Hazus-MH 2.1, Technical Manual, Multihazard Loss Estimation Methodology", FEMA.
- Iervolino, I. and Cornell, C.A. (2005), "Record selection for nonlinear seismic analysis of structures", Earthq. Spec., 21(3), 685-713. https://doi.org/10.1193/1.1990199.
- Izzuddin, B.A. (1991) "Nonlinear Dynamic Analysis of Framed Structures", Ph.D. Dissertation, Department of Civil Engineering, Imperial College, University of London.
- Izzuddin, B.A., Karayannis, C.G. and Elnashai, A.S. (1994) "Advanced nonlinear formulation for reinforced concrete beamcolumns", J. Struct. Eng., 120(10), 2913-2934. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:10(2913).
- Jalayer, F. and Cornell, C.A. (2009), "Alternative non-linear demand estimation methods for probability-based seismic assessments", Earthq. Eng. Struct. Dyn., 38(8), 951-972. https://doi.org/10.1002/eqe.876.
- Jalayer, F., Ebrahimian, H., Miano, A., Manfredi, G. and Sezen, H. (2017), "Analytical fragility assessment using unscaled ground motion records", Earthq. Eng. Struct. Dyn., 46(15), 2639-2663. https://doi.org/10.1002/eqe.2922.
- Joghataie, A. and Mohebbi, M. (2012), "Optimal control of nonlinear frames by Newmark and distributed genetic algorithm", Struct. Des. Tall Spec. Buildings, 21(2), 77-95. https://doi.org/10.1002/tal.576.
- Jung, H.J., Spencer, Jr.B.F. and Lee, I.W. (2003), "Control of seismically excited cable-stayed bridge employing magnetorheological fluid dampers", J Struct. Eng., 129(7), 873-883. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(873).
- Karayannis, C.G., Favvata, M.J. and Kakaletsis, D.J. (2011), "Seismic behaviour of infilled and pilotis RC frame structures with beam-column joint degradation effect" Eng. Struct., 33(10), 2821-2831. https://doi.org/10.1016/j.engstruct.2011.06.006.
- Karayannis, C.G., Izzuddin, B.A. and Elnashai, A.S. (1994) "Application of adaptive analysis to reinforced concrete frames", J. Struct. Eng., 120(10), 2935-2957. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:10(2935).
- Kataria, N.P. and Jangid, R.S. (2014), "Optimum semi-active hybrid system for seismic control of the horizontally curved bridge with Magnetorheological damper", Bridge Struct., 10(4), 145-160. https://doi.org/10.3233/BRS-150083.
- Kaveh, A., Fahimi-Farzam, M. and Kalateh-Ahani, M. (2015), "Optimum design of steel frame structures considering construction cost and seismic damage" Smart Struct. Syst., 16(1), 1-26. https://doi.org/10.12989/sss.2015.16.1.001.
- Kaveh, A., Kalateh-Ahani, M. and Fahimi-Farzam, M. (2014), "Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach", Earthq. Struct., 7(3), 271-294. https://doi.org/10.12989/eas.2014.7.3.271.
- Kazantzi, A.K., Vamvatsikos, D. and Lignos D.G. (2014), "Seismic performance of a steel moment-resisting frame subjected to strength and ductility uncertainty", Eng. Struct., 78, 69-77. https://doi.org/10.1016/j.engstruct.2014.06.044.
- Kim, Y. and Bai, J.W. (2017), "Seismic fragility analysis of faulty smart structures", In book: Computational Methods in Earthquake Engineering. https://doi.org/10.1007/978-3-319-47798-5_11.
- Kim, Y., Bai, J.W. and Albano, L.D. (2013), "Fragility estimates of smart structures with sensor faults", Smart Mater. Struct., 22(12), 125012. https://doi.org/10.1088/0964-1726/22/12/125012.
- Kiureghian, A.D. (2005), "Non-ergodicity and PEER's framework formula", Earthq. Eng. Struct. Dyn., 34(13), 1643-1652. https://doi.org/10.1002/eqe.504.
- Kohrangi, M., Bazzurro, P. and Vamvatsikos, D. (2016), "Vector and scalar IMs in structural response estimation, part I: hazard analysis", Earthq. Spec., 32(3), 1507-1524. https://doi.org/10.1193/053115EQS080M.
- Li, S., Tian, J. and Liu, Y. (2017), "Performance-based seismic design of eccentrically braced steel frames using target drift and failure mode" Earthq. Struct., 13(5), 443-454. https://doi.org/10.12989/eas.2017.13.5.443.
- Lu, Z., Li, K., Ouyang, Y. and Shan, J. (2018), "Performance-based optimal design of tuned impact damper for seismically excited nonlinear building", Eng. Struct., 160, 314-327. https://doi.org/10.1016/j.engstruct.2018.01.042.
- Mansouri, I., Soori, S., Amraie, H., Hu, J.W. and Shahbazi, S. (2018), "Performance based design optimum of CBFs using bee colony algorithm" Steel Compos. Struct., 27(5), 613-622. https://doi.org/10.12989/scs.2018.27.5.613.
- McKay, M.D., Beckman, R.J. and Conover, W.J. (1979), "A Comparison of three methods for selecting values of input variables in the analysis of output from a computer code", Technometrics, 21(2), 239-245. https://doi.org/10.2307/1268522.
- Mohammadi, R.K. and Sharghi, A.H. (2014), "On the optimum performance-based design of eccentrically braced frames" Steel Compos. Struct., 16(4), 357-374. https://doi.org/10.12989/scs.2014.16.4.357.
- Newmark, N.M. (1959), "A method of computing for structural dynamics", J. Eng. Mech., 85(3), 67-94.
- Nowak, A.S. and Collins, K.R. (2000), "Reliability of Structures", 2nd Edition, McGraw-Hill.
- Oliveira, F., Botto, M.A., Morais, P. and Suleman, A. (2018), "Semi-active structural vibration control of base-isolated buildings using magnetorheological dampers", J. Low Freq. Noise V. A., 37(3), 565-576. https://doi.org/10.1177/1461348417725959.
- Porter, K.A., Beck, J.L. and Shaikhutdinov, R.V. (2002), "Investigation of sensitivity of building loss estimates to major uncertain variables for the Van Nuys testbed", PEER Report, University of California, Berkley.
- Radu, A., Lazar, I.F. and Neild, S.A. (2019), "Performance-based seismic design of tuned inerter dampers", Struct. Control Health Monit., 26(5), e2346. https://doi.org/10.1002/stc.2346.
- Scozzese, F., Dall'Asta, A. and Tubaldi, E. (2019), "Seismic risk sensitivity of structures equipped with anti-seismic devices with uncertain properties", Struct. Saf., 77, 30-47. https://doi.org/10.1016/j.strusafe.2018.10.003.
- Sfahani, M.G., Guan, H. and Loo, Y.C. (2015), "Seismic reliability and risk assessment of structures based on fragility analysis - a review", Adv. Struct. Eng., 18(10), 1653-1669. https://doi.org/10.1260/1369-4332.18.10.1653.
- Shan, J., Ouyang, Y., Yuan, H. and Shi, W. (2016), "Seismic datadriven identification of linear models for building structures using performance and stabilizing objectives", Comput-Aided Civ. Inf., 31(11), 846-870. https://doi.org/10.1111/mice.12227.
- Shoaei, P., Orimi, H.T. and Zahrai, S.M. (2018), "Seismic reliability-based design of inelastic base-isolated structures with lead-rubber bearing systems", Soil Dyn. Earthq. Eng., 115, 589-605. https://doi.org/10.1016/j.soildyn.2018.09.033.
- Shu, Z., Li, S., Sun, X. and He, M. (2019), "Performance-based seismic design of a pendulum tuned mass damper system", J. Earthq. Eng., 23(2), 334-355. https://doi.org/10.1080/13632469.2017.1323042.
- Sues, R.K., Wen, Y.K. and Ang, A.H.S. (1985), "Stochastic evaluation of seismic structural performance", ASCE J. Struct. Eng., 111(6), 1204-1218. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:6(1204).
- Tubaldi, E., Barbato, M. and Dall'Asta, A. (2014), "Performancebased seismic risk assessment for buildings equipped with linear and nonlinear viscous dampers", Eng. Struct., 78, 90-99. https://doi.org/10.1016/j.engstruct.2014.04.052.
- Vamvatsikos, D. and Cornell, CA. (2002), "Incremental Dynamic Analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141.
- Wilbee, A.K., Pena, F., Condori, J., Sun, Z. and Dyke, S.J. (2015), "Fragility analysis of structures incorporating control systems", 6th International Conference on Advances in Experimental Structural Engineering, University of Illinois, United States of America.
- Wong, K.K.F. and Harris, J.L. (2012), "Seismic damage and fragility analysis of structures with tuned mass dampers based on plastic energy", Struct. Des. Tall Spec., 21(4), 296-310. https://doi.org/10.1002/tal.604.
- Yang, G.N., Long, F.X. and Wong D. (1988) "Optmial control of nonlinear flexible structures", Technical Report, NCEER.
- Yang, M.G., Cheng, Z.Q. and Hua, X.G. (2011), "An experimental study on using MR damper to mitigate longitudinal seismic response of a suspension bridge", Soil Dyn. Earthq. Eng., 31(8), 1171-1181. https://doi.org/10.1016/j.soildyn.2011.04.006.
- Zemp, R., De La Llera, J.C., Saldias, H. and Weber, F (2016), "Development of a long-stroke MR damper for a building with tuned masses", Smart Mater. Struct., 25(10), 105006. https://doi.org/10.1088/0964-1726/25/10/105006.