
IntroductionIntroduction

Autophagy is a lysosome-dependent catabolic pathway to 

remove intracellular materials, such as protein aggregates, 

long-lived/damaged organelles, and virus/bacteria [1]. Au-

tophagy functions as a fundamental cellular homeostasis 

program to provide source of energy and building blocks, or 

to eliminate harmful/dysfunctional intracellular materials to 

cope with many different pathophysiological conditions. In this 

regard, autophagy is highlighted to closely associated with 

various human diseases, such as diabetics, cardiovascular dis-

eases, neurodegenerative diseases, aging, and cancers [2-4].

Three Types of Autophagy Three Types of Autophagy 

Autophagy is divided into three categories: microautophagy, 

chaperone-mediated autophagy (CMA), and macroautophagy, 

depending on how the autophagic substrates move to lyso-

some. At first, microautophagy is generally believed to be a 

non-selective autophagy process in which the substrates are 

directly recognized and enter the lysosome for degradation. It 

is mainly observed in yeast, but is also observed in mammals 

Int J Oral Biol 46:74-80, 2021
pISSN: 1226-7155 • eISSN: 2287-6618
https://doi.org/10.11620/IJOB.2021.46.2.74

Autophagy: a lysosomal degradation process for 
cellular homeostasis and its relationship with  
oral squamous cell carcinoma
Junyoung Jung1, Joungmok Kim2, and Jeong Hee Kim1,2,3*

1Department of Nanopharmaceutical and Life Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea 
2Department of Oral Biochemistry and Molecular Biology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea 
3Department of KHU-KIST Converging Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of 
Korea

Autophagy is an evolutionarily well-conserved cellular homeostasis program that responds to various cellular stresses 
and degrades unnecessary or harmful intracellular materials in lysosomes. Accumulating evidence has shown that 
autophagy dysfunction often results in various human pathophysiological conditions, including metabolic disorders, 
cancers, and neurodegenerative diseases. The discovery of an autophagy machinery protein network has revealed 
underlying molecular mechanisms of autophagy, and advances in the understanding of its regulatory mechanism 
have provided novel therapeutic targets for treating human diseases. Recently, reports have emerged on the 
involvement of autophagy in oral squamous cell carcinoma (OSCC). Although the role of autophagy in cancer therapy 
is controversial, the beneficial use of the induction of autophagic cell death in OSCC has drawn significant attention. 
In this review, the types of autophagy, mechanism of autophagosome biogenesis, and modulating molecules and 
therapeutic candidates affecting the induction of autophagic cell death in OSCC are briefly described.

Keywords: Autophagy, Therapeutic targets, Autophagosome biogenesis, Oral squamous cell carcinoma

Received June 10, 2021; Revised June 15, 2021; Accepted June 16, 2021
*Correspondence to: Jeong Hee Kim, E-mail: jhkimh@khu.ac.kr   https://orcid.org/0000-0002-3884-4503

Copyright © The Korean Academy of Oral Biology
CC  This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mini Review IJOB
International Journal of Oral Biology

http://crossmark.crossref.org/dialog/?doi=10.11620/ijob.2021.46.2.74&domain=pdf&date_stamp=2021-06-30


Junyoung Jung, et al. Autophagy and oral squamous cell carcinoma

www.kijob.or.kr   75

[5]. Second, CMA is a selective and unique autophagy process 

in mammals. CMA substrates are cytosolic unfolded protein 

aggregates that are transferred to lysosomes with HSP70 

(heat shock 70 kDa). CMA substrates have a conserved CMA-

targeting motif (KFERQ) for HSP70 interaction. The CMA-

targeting motif undergoes a conformational change to expose 

and complex with HSP70 upon CMA signaling. The HSP70-

CMA substrate complex is recognized by the lysosomal mem-

brane receptor, Lysosome-Associated Membrane Protein type 

2A (LAMP-2A), and then enters the lysosome [6-8]. Finally, 

macroautophagy (hereafter autophagy) uses a unique transport 

vesicle with a double-membrane structure, an autophago-

some, to deliver its destructive cargos to the lysosome [9]. It 

could be a non-selective process, but accumulating reports 

have shown that it chooses and selectively degrades intracel-

lular materials in response to a certain condition [9]. The au-

tophagosome fuses with lysosome to form the autolysosome, 

where the cargos are eventually degraded by lyososomal acid 

hydrolases. Extensive genetic and biochemical studies in yeast 

and fly have provided a mechanistic insight into autophagy 

machinery proteins, such as autophagy-related gene (ATGs) 

family, vascular protein sorting (VPS) proteins, Rab small GT-

Pases, and SNARE proteins [10,11]. 

Molecular Mechanism of Autophagosome Molecular Mechanism of Autophagosome 
BiogenesisBiogenesis

Autophagosome biogenesis is carried out by the coordinated 

actions of autophagy machinery proteins, of which Unc-51 

like autophagy activating kinase 1 (ULK1) complex and VPS34 

complex initiate autophagosome biogenesis and autophago-

somal membrane nucleation [9-11]. In addition, two ubiquitin-

like (UBL) conjugate systems, ATG12-ATG5-ATG16L1 and 

microtubule associated protein 1 light chain 3 (LC3) is required 

for phagophore (pre-autophagosomal structure) membrane 

elongation (Fig. 1) [12]. 

1. Initiation and nucleation: ULK1 and VPS34 complex

ULK1 is a serine/threonine kinase and orthologue of the 

yeast Atg1. ULK1 appears to be a most upstream regulator to 

trigger the autophagy program [11,13]. ULK1 forms a complex 

with FIP200, ATG13, and ATG101, which function to stabilize 

and activate ULK1, and also play an important role in targeting 

the ULK1 complex into the omegasome, a unique membrane 

structure initiating the phagophore formation [12,14]. ULK1 

complex is regulated by various phosphorylations, especially 
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Fig. 1.  Molecular mechanism of autophagy process. Autophagy occurs by a coordinated action of autophagy machinery proteins. ULK1 complex, consisting 
of the catalytic subunit ULK1 protein kinase and its associated-regulatory subunits such as ATG13, FIP200, and ATG101, initiates the phagophore formation 
by phosphorylating and activating VPS34 complex containing either ATG14L (PI3KC3-C1) or UVRAG (PI3KC3-C2), which in turn marks a distinct autopha-
gosomal membrane with its phospholipid product, PI-3-P. ATG12-ATG5-ATG16L1 complex and phosphatidylethanolamine (PE)-conjugated LC3 (LC3-II) are 
recruited on this autophagosomal membrane for elongation and closure of the phagophore membrane. Closure of the phagophore membrane gives rise to a 
double-membrane bounded vesicle called the autophagosome, which matures and finally fuses with the lysosome to form the autolysosome. Revised from 
the article of Zhou et al. (Int J Biol Sci 2019;15:726-37) [45].
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by mechanistic target of rapamycin complex 1 (mTORC1) and 

AMP-activated protein kinase (AMPK). Both mTORC1 and 

AMPK consist of key signaling pathways for cellular energy 

homeostasis, especially for amino acid and glucose metabo-

lism [15,16]. mTORC1 inhibits the ULK1 complex by directly 

phosphorylating ULK1 to block ULK1 activation by AMPK [17]. 

However, once mTORC1 is inactive when the nutrient supply 

is limited, the mTORC1-dependent inhibitory phosphorylation 

is diminished, which allows AMPK-ULK1 interaction. AMPK 

directly phosphorylates to activate ULK1, leading to autophagy 

initiation [17,18]. Next, ULK1 stimulates VPS34 complex by 

phosphorylating a key component of VPS34 complex, Beclin 1 

[19]. VPS34 complex is a class III phosphatidylinositol 3-kinase 

(PIK3C3/VPS34) to phosphorylate phosphatidylinositol (PI) on 

the endosomal membrane to generate PI-3-monophosphate 

(PI-3-P), a key membrane marker for autophagosome biogen-

esis [20]. VPS34 interacts with various proteins to form many 

different complexes that are responsible for numerous cellular 

functions such as the multi-vesicular body pathway, retro-

grade trafficking from endosomes to the Golgi, phagosome 

maturation, and autophagy [20], of which ATG14L and UVRAG 

(UV-radiation resistance-associated gene protein) makes 

the resulting VPS34 complex as a pro-autophagy complex 

[21]. In autophagy, VPS34 forms at least two distinct com-

plexes, complex I with ATG14L (PI3K3-C1) and complex II with 

UVRAG (PI3K3-C2), which are required for different stages of 

the autophagy process [22,23]. The core complex unit contains 

a catalytic subunit VPS34 lipid kinase, a pseudokinase VPS15/

p150, and a scaffolding subunit Beclin 1. Depending on the 

subcellular context, this core complex binds to either ATG14 

or UVRAG in a mutually exclusive manner defining the PI3K3-

C1 and -C2, respectively. The PI3K3-C1 containing ATG14 is 

necessary for the nucleation of the autophagosomal mem-

brane and the UVRAG-containing PI3K3-C2 complex functions 

in autophagosome maturation and autolysosomal tubula-

tion [24,25]. Notably, PI3K3-C2 also play a role in endosome 

trafficking and multi-vesicular body formation [26]. ATG14L 

targets PI3K3-C1 to the phagophore sites by its N-terminal 

cysteine-rich domain and the C-terminal amphipathic helix 

BATS (Barkor/ATG14L autophagosome targeting sequence) 

domain [27,28]. UVRAG regulates autophagosome maturation 

by binding to the HOPS (homotypic fusion and vacuole pro-

tein sorting) complex, which stimulates lysosomal fusion with 

the autophagosome [29]. A number of phospho-regulation 

mechanism has also been shown in the VPS34 complex. First, 

VPS34, Beclin 1, ATG14L, and UVRAG are all directly phos-

phorylated and regulated by AMPK-mTORC1 signaling. AMPK 

can phosphorylate both VPS34 and Beclin 1, but it appears to 

be regulated by ATG14L on the complex [30]. For instance, 

AMPK prefers to phosphorylate to inhibit VPS34 lipid kinase 

activity in non-autophagic VPS34 complex without ATG14L, 

whereas it phosphorylates Beclin 1 in PI3KC3-C1 or -C2 for 

activation. Notably, ATG14L is shown to be phosphorylated by 

mTORC1, which makes ATG14L-containing PI3KC3-C1 inac-

tive [31]. Similarly, mTORC1 also phosphorylates UVRAG to 

inhibit the complex by recruiting the inhibitor protein RUBICON 

into the UVRAG-associated complex [24,25]. Upon amino 

acid starvation, which blunts mTORC1 signaling, mTORC1-

dependent inhibitory UVRAG phosphorylation is diminished to 

release UVRAG from RUBICON, allowing UVRAG-HOPS com-

plex interaction for autophagosome maturation with lysosome.

2. �Elongation and completion of autophagosomal 

membrane: ATG5-ATG12-ATG16L and LC3 

conjugation system 

The elongation of autophagosomal membrane requires two 

UBL conjugation systems. First, ATG12-ATG5-ATG16L com-

plex is prepared by a coordinated action of UBL proteins, in 

which ATG12 is covalently conjugated to ATG5 in a manner 

dependent on the E1-like activating enzyme ATG7 and the 

E2-like conjugating enzyme ATG10 [32-36]. ATG12-ATG5-

ATG16L1 complex associates with the phagophore membrane 

for elongation and closure by recruiting LC3 on the phagophore 

membrane and promoting LC3 processing. The complex is dis-

sociated upon the completion of autophagosome biogenesis 

[37,38]. The second UBL system is the LC3/ATG8 system. 

LC3 is first cleaved by the cysteine protease ATG4, exposing 

a C-terminal glycine (LC-I). It is further processed by ATG7 

(E1-like), ATG3 (E2-like), and then conjugated to phospha-

tidylethanolamine (PE) with E3-like ATG12-ATG5-ATG16L1 

complex [39,40]. In this sense, turnover of LC3-I into LC-II on 

immunoblotting is commonly used as an autophagy marker. 

LC3-II coordinates at phagophore membrane to elongation of 

the membrane and interacts with various autophagy receptors, 

such as p62/SQSTM-1 (sequestosome-1) and NDP52, which 

bind to the ubiquitinated cargos and then undergo oligomer-

ization to deliver the autophagic substrates to the autophago-

some [41-45]. 
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Autophagy and Oral CancerAutophagy and Oral Cancer

Among oral cancers oral squamous cell carcinoma (OSCC) 

is a major type of head and neck carcinoma which accounts 

for about 90% of oral cancers. OSCC exhibits a survival rate 

of less than 60%. Diagnosis in late stage and lack of effective 

treatment make OSCC more significant disease [46-48]. OSCC 

showed many pathological differences from other cancers 

found in head and neck area [49]. However, the molecular and 

cellular mechanism of the pathogenesis are relatively not well 

understood. Recently, the relationship between oral cancers 

and autophagy has drawn attention [50]. Autophagy is cellular 

self-digestion pathway involved in many human disease and 

physiology [51]. There are controversial reports about the role 

of autophagy in cancer therapy: Autophagy may promote cell 

survival or induce cell death [52]. Therefore, understanding cy-

toprotective autophagy and autophagic cell death are important 

in development of effective therapeutic agents for OSCC. In 

this mini review, we focused on the molecules and chemicals 

involved in the induction of autophagic death of OSCC. 

Current studies have shown that the relation of signaling/

modulating molecules and the autophagy pathway [53-55]. 

Some of the molecules are involved in suppression and others 

are in progression of the autophagy pathway. Long noncod-

ing RNA (lnc RNA) cancer susceptibility candidate 9 (CASC9) 

which is highly expressed in various cancers including OSCC 

[53]. Yang et al. [53] reported that depletion of CASC9 inhibited 

OSCC growth and autophagy-mediated cell death through the 

AKT/mTOR pathway. 

Retinol-binding protein 1 (RBP1) is known to be involved in 

physiological functions, including in the pathogenesis of sever-

al types of cancer. Recently, the role of RBP1 in autophagy in-

duction of OSCC was reported [54]. RBP1 activated autophagy 

through modulation of cytoskeleton-associated protein 4/p63 

(CKAP4/p63), a type II transmembrane protein that functions 

as a receptor for several ligands, including anti-proliferating 

factor [54, 56]. 

Overexpression of secretory clusterin (sCLU) promoted au-

tophagy through AMPK/Akt/mTOR signaling pathway. How-

ever, interestingly the induction of autophagy by sCLU resulted 

in cell survival and protection from apoptosis in oral cancer [55]. 

Chemicals and Natural Products Involved Chemicals and Natural Products Involved 
in Autophagic Cell Death of OSCCin Autophagic Cell Death of OSCC

Research on the development of chemicals and natural 

products which induce the autophagy pathway in OSCC are 

drawn attention in these days. A combination of proteinase 

inhibitor, bortezomib and irradiation treatment on human OSCC 

cells induced autophagic cell death through tumor necrosis 

factor receptor-associated factor 6 (TRAF-6) ubiquitination 

and TRAF6-medicated Akt activation. The authors suggested 

the possibility of novel strategy of OSCC treatment [57]. It 

was reported that chlorpromazine (CPZ) which is used to treat 

psychiatric disorders induced autophagy in oral cancer cells 

evidenced by autophagosome formation, expression of the 

related proteins and activation of the PI3K/Akt/mTOR/p70S6K 

pathway [58]. These results suggested that CPZ can be a novel 

treatment of oral cancer.

The use of natural products in treatment of oral cancer has 

been tried. One of the examples is nimbolide, a limonoid from 

the neem tree (Azadirachta indica) which induced both apop-

tosis and autophagy in oral cancer cells. Nimbolide enhanced 

apoptosis by overcoming the cytoprotective effect of autoph-

agy [59]. Another natural product (phytochemical) ursolic acid 

is reported to induce apoptosis and autophagy in OSCC cells. 

Ursolic acid revealed LC3B-II conversion, enhanced p62 ex-

pression and autophagosome accumulation in OSCC cells [60]. 

16-hydroxycleroda-3, 13-dine-15, 16-olide (HCD) isolated 

from a medicinal plant Polyalthia longifolia showed autophagy 

induction effect on human OSCC cells through LC3-mediated 

LC3-I/LC3-II/p62 pathway [61]. This compound has been 

shown to have autophagy induction effect on brain tumor cells 

evidenced by the increase in the autophagic markers including 

LC3-II and Beclin-1 [62] and apoptosis induction effect on hu-

man renal carcinoma cells through Akt, mTOR, and MEK-ERK 

pathways [63].

ConclusionsConclusions

The role of autophagy in cancer is controversial because ei-

ther cell death can be induced, or cell survival can be promoted 

by the autophagy pathway. There are a lot to be studied and 

discovered about this complex pathway and its relationship 

with oral cancer [50,64,65]. We briefly reviewed the types and 

mechanism of autophagy, and molecules and chemicals in-

volved in the induction of autophagic cell death in OSCC. The 

understanding of the detailed mechanism behind autophagy 

will open a new passage to the prevention and therapeutics of 

oral cancers. 
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