DOI QR코드

DOI QR Code

Investigation for Shoulder Kinematics Using Depth Sensor-Based Motion Analysis System

깊이 센서 기반 모션 분석 시스템을 사용한 어깨 운동학 조사

  • Lee, Ingyu (Department of Orthopaedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Park, Jai Hyung (Department of Orthopaedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Son, Dong-Wook (Department of Orthopaedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Cho, Yongun (Department of Orthopaedic Surgery, Konkuk University Chungju Hospital, College of Medicine, Konkuk University) ;
  • Ha, Sang Hoon (Department of Orthopaedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Kim, Eugene (Department of Orthopaedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine)
  • 이인규 (성균관대학교 의과대학 강북삼성병원 정형외과학교실) ;
  • 박재형 (성균관대학교 의과대학 강북삼성병원 정형외과학교실) ;
  • 손동욱 (성균관대학교 의과대학 강북삼성병원 정형외과학교실) ;
  • 조용운 (건국대학교 의과대학 건국대학교 충주병원 정형외과학교실) ;
  • 하상훈 (성균관대학교 의과대학 강북삼성병원 정형외과학교실) ;
  • 김유진 (성균관대학교 의과대학 강북삼성병원 정형외과학교실)
  • Received : 2020.02.07
  • Accepted : 2020.04.10
  • Published : 2021.02.28

Abstract

Purpose: The purpose of this study was to analyze the motion of the shoulder joint dynamically through a depth sensor-based motion analysis system for the normal group and patients group with shoulder disease and to report the results along with a review of the relevant literature. Materials and Methods: Seventy subjects participated in the study and were categorized as follows: 30 subjects in the normal group and 40 subjects in the group of patients with shoulder disease. The patients with shoulder disease were subdivided into the following four disease groups: adhesive capsulitis, impingement syndrome, rotator cuff tear, and cuff tear arthropathy. Repeating abduction and adduction three times, the angle over time was measured using a depth sensor-based motion analysis system. The maximum abduction angle (θmax), the maximum abduction angular velocity (ωmax), the maximum adduction angular velocity (ωmin), and the abduction/adduction time ratio (tabd/tadd) were calculated. The above parameters in the 30 subjects in the normal group and 40 subjects in the patients group were compared. In addition, the 30 subjects in the normal group and each subgroup (10 patients each) according to the four disease groups, giving a total of five groups, were compared. Results: Compared to the normal group, the maximum abduction angle (θmax), the maximum abduction angular velocity (ωmax), and the maximum adduction angular velocity (ωmin) were lower, and abduction/adduction time ratio (tabd/tadd) was higher in the patients with shoulder disease. A comparison of the subdivided disease groups revealed a lower maximum abduction angle (θmax) and the maximum abduction angular velocity (ωmax) in the adhesive capsulitis and cuff tear arthropathy groups than the normal group. In addition, the abduction/adduction time ratio (tabd/tadd) was higher in the adhesive capsulitis group, rotator cuff tear group, and cuff tear arthropathy group than in the normal group. Conclusion: Through an evaluation of the shoulder joint using the depth sensor-based motion analysis system, it was possible to measure the range of motion, and the dynamic motion parameter, such as angular velocity. These results show that accurate evaluations of the function of the shoulder joint and an in-depth understanding of shoulder diseases are possible.

목적: 견관절의 운동 기능에 대한 평가는 견관절 질환의 진단 및 경과를 파악하는 데 있어 중요하다. 본 연구는 정상군 및 견관절질환을 가진 환자군에 대해 깊이 센서 기반 동작 분석 시스템을 통한 관절 운동을 동적으로 분석하여 문헌 고찰과 함께 보고하는 바이다. 대상 및 방법: 70명의 피험자가 연구에 참여하였으며 정상군 30명과 견관절 질환을 가진 환자 40명으로 분류하였다. 견관절 질환을 가진 환자 40명은 4가지 질환(회전근개 파열, 유착성 활액막염, 충돌 증후군, 회전근개 관절병증)으로 세분화하였다. 총 3회 반복된 외전 및 내전 운동 시 시간에 따른 각도를 깊이 센서 기반 동작 분석 시스템으로 측정하였으며, 최대 외전 각도, 최대 외전 각 속도, 최대 내전 각속도, 외전/내전 시간 비를 계산하였다. 상기 매개 변수들에 대해 정상군 30명과 환자군 40명을 비교하는 한편, 정상군 30명과 4가지 질환군별 10명, 총 5개 군을 비교하였다. 결과: 견관절 질환을 가진 환자군에서는 정상군에 비해 감소된 최대 외전 각도(θmax), 최대 외전 각속도(ωmax), 최대 내전 각속도(ωmin)를 보였으며, 증가된 외전/내전 시간 비(tabd/tadd)를 보였다. 세분화된 질환군별 비교에서는 최대 외전 각도(θmax)와 최대 외전각속도(ωmax)가 정상군에 비해 유착성 활액막염 환자군 및 회전근개 관절병증 환자군에서 감소되었고, 외전/내전 시간 비(tabd/tadd)가 정상군에 비해 유착성 활액막염 환자군, 회전근개 파열 환자군 및 회전근개 관절병증 환자군에서 증가되었다. 결론: 깊이 센서 기반 동작 분석 시스템을 사용한 견관절의 운동 분석을 통해 관절 운동 범위뿐 아니라 각속도 등의 동적 운동 변수를 측정할 수 있었으며, 이를 통해 견관절의 더 정확한 기능 평가 및 심도 있는 질환의 이해가 가능할 것이다.

Keywords

References

  1. Humphries A, Cirovic S, Bull AM, Hearnden A, Shaheen AF. Assessment of the glenohumeral joint's active and passive axial rotational range. J Shoulder Elbow Surg. 2015;24:1974-81. https://doi.org/10.1016/j.jse.2015.07.007
  2. Muir SW, Corea CL, Beaupre L. Evaluating change in clinical status: reliability and measures of agreement for the assessment of glenohumeral range of motion. N Am J Sports Phys Ther. 2010;5:98-110.
  3. Cools AM, De Wilde L, Van Tongel A, Ceyssens C, Ryckewaert R, Cambier DC. Measuring shoulder external and internal rotation strength and range of motion: comprehensive intra-rater and inter-rater reliability study of several testing protocols. J Shoulder Elbow Surg. 2014;23:1454-61. https://doi.org/10.1016/j.jse.2014.01.006
  4. Mullaney MJ, McHugh MP, Johnson CP, Tyler TF. Reliability of shoulder range of motion comparing a goniometer to a digital level. Physiother Theory Pract. 2010;26:327-33. https://doi.org/10.3109/09593980903094230
  5. Elveru RA, Rothstein JM, Lamb RL. Goniometric reliability in a clinical setting. Subtalar and ankle joint measurements. Phys Ther. 1988;68:672-7. https://doi.org/10.1093/ptj/68.5.672
  6. Riddle DL, Rothstein JM, Lamb RL. Goniometric reliability in a clinical setting. Shoulder measurements. Phys Ther. 1987;67:668-73. https://doi.org/10.1093/ptj/67.5.668
  7. Bovens AM, van Baak MA, Vrencken JG, Wijnen JA, Verstappen FT. Variability and reliability of joint measurements. Am J Sports Med. 1990;18:58-63. https://doi.org/10.1177/036354659001800110
  8. Giphart JE, Brunkhorst JP, Horn NH, Shelburne KB, Torry MR, Millett PJ. Effect of plane of arm elevation on glenohumeral kinematics: a normative biplane fluoroscopy study. J Bone Joint Surg Am. 2013;95:238-45. https://doi.org/10.2106/JBJS.J.01875
  9. Hayes K, Walton JR, Szomor ZR, Murrell GA. Reliability of five methods for assessing shoulder range of motion. Aust J Physiother. 2001;47:289-94. https://doi.org/10.1016/S0004-9514(14)60274-9
  10. van de Pol RJ, van Trijffel E, Lucas C. Inter-rater reliability for measurement of passive physiological range of motion of upper extremity joints is better if instruments are used: a systematic review. J Physiother. 2010;56:7-17. https://doi.org/10.1016/S1836-9553(10)70049-7
  11. Terwee CB, de Winter AF, Scholten RJ, et al. Interobserver reproducibility of the visual estimation of range of motion of the shoulder. Arch Phys Med Rehabil. 2005;86:1356-61. https://doi.org/10.1016/j.apmr.2004.12.031
  12. Aizawa J, Masuda T, Hyodo K, et al. Ranges of active joint motion for the shoulder, elbow, and wrist in healthy adults. Disabil Rehabil. 2013;35:1342-9. https://doi.org/10.3109/09638288.2012.731133
  13. Alta TD, de Toledo JM, Veeger HE, Janssen TW, Willems WJ. The active and passive kinematic difference between primary reverse and total shoulder prostheses. J Shoulder Elbow Surg. 2014;23:1395-402. https://doi.org/10.1016/j.jse.2014.01.040
  14. Bonnechere B, Jansen B, Salvia P, et al. Validity and reliability of the Kinect within functional assessment activities: comparison with standard stereophotogrammetry. Gait Posture. 2014;39:593-8. https://doi.org/10.1016/j.gaitpost.2013.09.018
  15. Bonnechere B, Sholukha V, Jansen B, Omelina L, Rooze M, Van Sint Jan S. Determination of repeatability of Kinect sensor. Telemed J E Health. 2014;20:451-3. https://doi.org/10.1089/tmj.2013.0247
  16. Cippitelli E, Gasparrini S, Spinsante S, Gambi E. Kinect as a tool for gait analysis: validation of a real-time joint extraction algorithm working in side view. Sensors (Basel). 2015;15:1417-34. https://doi.org/10.3390/s150101417
  17. Fernandez-Baena A, Susin A, Lligadas X. Biomechanical validation of upper-body and lower-body joint movements of Kinect motion capture data for rehabilitation treatments. Paper presented at: 4th International Conference on Intelligent Networking and Collaborative Systems; 2012 Sep 19-21; Bucharest, Romania. p.656-61.
  18. Hawi N, Liodakis E, Musolli D, et al. Range of motion assessment of the shoulder and elbow joints using a motion sensing input device: a pilot study. Technol Health Care. 2014;22:289-95. https://doi.org/10.3233/THC-140831
  19. Mousavi Hondori H, Khademi M. A review on technical and clinical impact of Microsoft Kinect on physical therapy and rehabilitation. J Med Eng. 2014;2014:846514. https://doi.org/10.1155/2014/846514
  20. Weiss PL, Kizony R, Elion O, et al. Development and validation of tele-health system for stroke rehabilitation. Int J Disabil Hum Dev. 2014;13:361-8.
  21. Kurillo G, Han JJ, Obdrzalek S, et al. Upper extremity reachable workspace evaluation with Kinect. Stud Health Technol Inform. 2013;184:247-53.
  22. Games for Health Europe. 3rd Games for Health Europe Conference; 2013 Oct 28-29; Amstelveen, Netherlands. Wiesbaden: Springer Vieweg, 2013.
  23. Werner BC, Holzgrefe RE, Griffin JW, et al. Validation of an innovative method of shoulder range-of-motion measurement using a smartphone clinometer application. J Shoulder Elbow Surg. 2014;23:e275-82. https://doi.org/10.1016/j.jse.2014.02.030
  24. Arzi H, Krasovsky T, Pritsch M, Liebermann DG. Movement control in patients with shoulder instability: a comparison between patients after open surgery and nonoperated patients. J Shoulder Elbow Surg. 2014;23:982-92. https://doi.org/10.1016/j.jse.2013.09.021
  25. Uri O, Pritsch M, Oran A, Liebermann DG. Upper limb kinematics after arthroscopic and open shoulder stabilization. J Shoulder Elbow Surg. 2015;24:399-406. https://doi.org/10.1016/j.jse.2014.08.006
  26. Matsen FA 3rd, Lauder A, Rector K, Keeling P, Cherones AL. Measurement of active shoulder motion using the Kinect, a commercially available infrared position detection system. J Shoulder Elbow Surg. 2016;25:216-23. https://doi.org/10.1016/j.jse.2015.07.011
  27. Huber ME, Seitz AL, Leeser M, Sternad D. Validity and reliability of Kinect skeleton for measuring shoulder joint angles: a feasibility study. Physiotherapy. 2015;101:389-93. https://doi.org/10.1016/j.physio.2015.02.002
  28. Lee SH, Yoon C, Chung SG, et al. Measurement of shoulder range of motion in patients with adhesive capsulitis using a Kinect. PLoS One. 2015;10:e0129398. https://doi.org/10.1371/journal.pone.0129398
  29. Otte K, Kayser B, Mansow-Model S, et al. Accuracy and reliability of the Kinect version 2 for clinical measurement of motor function. PLoS One. 2016;11:e0166532. https://doi.org/10.1371/journal.pone.0166532
  30. Collin P, Matsumura N, Ladermann A, Denard PJ, Walch G. Relationship between massive chronic rotator cuff tear pattern and loss of active shoulder range of motion. J Shoulder Elbow Surg. 2014;23:1195-202. https://doi.org/10.1016/j.jse.2013.11.019
  31. Balci N, Balci MK, Tuzuner S. Shoulder adhesive capsulitis and shoulder range of motion in type II diabetes mellitus: association with diabetic complications. J Diabetes Complications. 1999;13:135-40. https://doi.org/10.1016/S1056-8727(99)00037-9
  32. James-Belin E, Lasbleiz S, Haddad A, et al. Shoulder adhesive capsulitis: diagnostic value of active and passive range of motion with volume of gleno-humeral capsule as a reference. Eur J Phys Rehabil Med. Published online November 18, 2019; doi:10.23736/S1973-9087.19.05890-8.
  33. Ecklund KJ, Lee TQ, Tibone J, Gupta R. Rotator cuff tear arthropathy. J Am Acad Orthop Surg. 2007;15:340-9. https://doi.org/10.5435/00124635-200706000-00003
  34. Goldstein B. Shoulder anatomy and biomechanics. Phys Med Rehabil Clin N Am. 2004;15:313-49. https://doi.org/10.1016/j.pmr.2003.12.008
  35. Fu FH, Harner CD, Klein AH. Shoulder impingement syndrome. A critical review. Clin Orthop Relat Res. 1991;269:162-73.
  36. Post M, Silver R, Singh M. Rotator cuff tear. Diagnosis and treatment. Clin Orthop Relat Res. 1983;173:78-91.
  37. Murrell GA, Walton JR. Diagnosis of rotator cuff tears. Lancet. 2001;357:769-70. https://doi.org/10.1016/S0140-6736(00)04161-1