DOI QR코드

DOI QR Code

Growth and Physiological Characteristics of Containerized Seedlings of Sageretia thea at Different Fertilization Treatments

시비처리에 따른 상동나무 용기묘의 생장 및 생리특성

  • Eo, Hyun Ji (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Son, Yong Hwan (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Park, Sung Hyuk (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Park, Gwang Hun (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Lee, Kyeong Cheol (Department of Forestry, Korea National College of Agriculture and Fisheries) ;
  • Son, Ho Jun (Forest Medicinal Resources Research Center, National Institute of Forest Science)
  • 어현지 (국립산림과학원 산림약용자원연구소) ;
  • 손용환 (국립산림과학원 산림약용자원연구소) ;
  • 박성혁 (국립산림과학원 산림약용자원연구소) ;
  • 박광훈 (국립산림과학원 산림약용자원연구소) ;
  • 이경철 (한국농수산대학 산림학과) ;
  • 손호준 (국립산림과학원 산림약용자원연구소)
  • Received : 2021.04.05
  • Accepted : 2021.05.28
  • Published : 2021.06.30

Abstract

This study aims to optimize the appropriate concentration of fertilizers for Sageretia thea by analyzing growth performances (height and root collar diameter) and physiological characteristics (photosynthesis, chlorophyll contents, and chlorophyll fluorescence reaction). As fertilizer concentration was increased to 1.5 g·L-1, growth increased, but it decreased at 2.0 g·L-1 treatment. Root collar diameter growth was reduced because of higher fertilizer concentrations. Photosynthesis reactions showed the highest CO2 reaction curves, maximum photosynthesis rate, and maximum carboxylation rate in the 1.5 g·L-1 fertilizer treatment. The chlorophyll fluorescence reaction and SPAD values revealed that fertilizer treatment improves photosynthesis efficiency and robustness compared with untreated control. Therefore, the appropriate fertilizer concentration for producing good seedling quality of Sageretia thea is 1.0~1.5 g·L-1.

본 연구는 다양한 효능·효과가 최근에 입증된 상동나무를 대상으로 다목적 수용성 복합비료를 농도(0.5 g·L-1, 1.0 g·L-1, 1.5 g·L-1, 2.0 g·L-1)처리에 따른 생장특성(간장, 근원경 및 H/D율)과 생리특성(광합성, 엽록소 함량 및 형광반응)을 정량화하여 적정 시비 수준을 알아보고자 실시하였다. 간장생장은 시비농도가 1.5 g·L-1까지 높아짐에 따라 생장량이 증가했으나 2.0g·L-1 시비처리에서는 낮아졌다. 근원경 생장은 시비농도가 높아짐에 따라 생장량은 유의하게 낮아졌다. 광합성 반응은 1.5 g·L-1 시비처리에서 엽육세포 내 CO2 반응곡선, 최대광합성효율, 최대 카르복실화 속도가 가장 높았다. 엽록소 형광반응과 엽록소 지수는 무처리구에 비해 시비처리구에서 유의적으로 광합성 기구의 효율을 높이고 있음을 확인하였다. 따라서 우량한 묘목품질의 상동나무를 생산하기 위한 시비 수준은 1.0~1.5 g·L-1 농도라고 판단된다.

Keywords

Acknowledgement

본 연구는 국립산림과학원 석.박사연구원 지원 사업과 일반연구과제를 통해 이루어진 것으로 이에 감사드립니다.

References

  1. Bayala, J., Dianda, M., Wilson, J., Ouedraogo, S.J. and Sanon, K. 2009. Predictiong field performance of five irrigated tree species using seedling quality assessment in Burkina Faso, West Africa, New Forests 38(3): 309-322. https://doi.org/10.1007/s11056-009-9149-4
  2. Broschat, T.K. 1995. Nitrate, phosphate, and potassium leachingfrom container-grown plants fertilized by several methods. Hortscience 30: 74-77. https://doi.org/10.21273/hortsci.30.1.74
  3. Bumgarner, M.L., Salifu, K.F. and Jacobs, D.F. 2008. Subirrigation of Quercus rubra seedlings: Nursery stock quality, media chemistry, and early field performance. Hortscience 43(7): 2179-2185. https://doi.org/10.21273/hortsci.43.7.2179
  4. Burdett, A.N. 1990. Physiological processes in plantation establishment and the development of specifications for forest planting stock. Canadian Journal of Forest Research 20(4): 415-427. https://doi.org/10.1139/x90-059
  5. Carlson, W.C. 1981. Effects of controlled-release fertilizers on the shot and root development of outplanted western hemlock (Tsuga heterophylla Raf. Sarg.) seedlings. Canadian. Journal of Forest Research 11(1981): 752-757.
  6. Cho, E.J. 2000. A survey on the usage of wild grasses. Korean J. Dietary Culture 15(1): 59-68.
  7. Choo, G.C. 1992. Systematic studies of the family Rhamnaceae in Korea Ph.D. Thesis. Konkuk University. pp. 22-70.
  8. Chung, J.M., Cho, S.H., Kim, Y.S., Kong, K.S., Kim, H.J., Lee, C.H. and Lee, H.J. 2017, Ethnobotany in Korea: The traditional knowledge and use of indigenous plants. Korea National Arboretum. Pocheon, Korea. pp. 1048.
  9. Dumroese, R.K., Sung, S.S., Pinto, J.R., Davis, AS. and Scott, D.A. 2013. Morphology, gas exchange, and chlorophyll content of long leaf pine seedlings in response to rooting volume, copper root pruning, and nitrogen supply in a container nursery. New Forests 44(2013): 881-897. https://doi.org/10.1007/s11056-013-9377-5
  10. Grossnickle, S.C. 2005. Importance of root growth in overcoming planting stress. New Forests 30(2005): 273-294. https://doi.org/10.1007/s11056-004-8303-2
  11. Haase, D.L., Riley, L.E., Dumroese, R.K. and Landes, T.D. 2007 Morphological and physiological evaluation of seedling quality. Proceedings of the Conference "Forest and Conservation Nursery Associations. 2006. pp. 3-8.
  12. Holland, V., Koller, S. and Bruggemann, W. 2013. Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during autumn senescence using OJIP fluorescence transient analysis. Plant Biology 16(4): 801-804. https://doi.org/10.1111/plb.12105
  13. Hopkins, W.G. and Huner, N.P.A. 2008. Introduction to plant physiology. (4nd ed.). John Wiley and Sons. New York, NY, USA. pp. 223-230.
  14. Imo, M. and Timmer, V.R. 1999. Vector competition analysis of black spruce seedling responses to nutrient loading and vegetation control. Canadian Journal of Forest Research 29(4): 474-486. https://doi.org/10.1139/x99-020
  15. Johnson, F., Paterson, J., Leeder, G., Mansfield, C., Pinto, F. and Watson, S. 1996. Artificial regeneration of Ontario's forest: Species and stock selection manual. Forest Research Information Paper 1996(131): pp. 51.
  16. KFS (Korea Forest Service). 2014. The guidelines for seed and nursery practices. pp. 100.
  17. Jo, M.S., Lee, S.W. and Park, B.B. 2012. Effects of three fertilization methods on the growth performances and physiological characteristics of container seedling. Korean Forest Society 2012,-(2012): 570-573.
  18. Kim, D.K., Oh, K.H., Lee, B.Y., Kim, M.H., Kim, T.K., Lee, E.Y., Roh, H.C., Lee, M.H. and Rhee, D.G. 2004. Management of korean biological resources for access regulation and benefit-sharing. Korean Journal of Environmental Biology 22(2): 259-264.
  19. Kim, H.N., Park, G.H., Kim, J.D., Park, S.B., Eo, H.J. and Jeong, J.B. 2019a. Effect of the extracts from the leaves and branches of Sageretia thea on β-catenin proteasomal degradation in human colorectal and lung cancer cells. Korean Journal of Plant Resources 32(2): 153-159. https://doi.org/10.7732/KJPR.2019.32.2.153
  20. Kim, H.N., Park, G.H., Park, S.B., Kim, J.D., Eo, H.J., Son, H.J., Song, J.H. and Jeong, J.B. 2019b. Extracts from Sageretia thea reduce cell viability through inducing cyclin D1 proteasomal degradation and HO-1 expression in human colorectal cancer cells. BMC Complementary and Alternative medicine 19(1): 43. https://doi.org/10.1186/s12906-019-2453-4
  21. Kim, H.N., Park, G.H., Park, S.B., Kim, J.D., Eo, H.J., Son, H.J., Song, J.H. and Jeong, J.B. 2019c. Sageretia thea inhibits inflammation through suppression of NF-κB and MAPK and activation of Nrf2/HO-1 signaling pathways in RAW264.7 cells. The american Journal of Chinese Medicine 47(2): 385-403. https://doi.org/10.1142/s0192415x19500198
  22. Kim, J. S. and Hyun, T. K. 2015. Nutrients and antioxidative activities of Sageretia theezans fruit. The Korean Society of Medicinal Crop Science 2015(5): 225-226.
  23. Kim, J. S. and Kim, T.Y. 2011. Woody plants of Korean peninsula. Dolbegae. Seoul, Korea. pp. 688.
  24. Kim, J.D., Park, S.B., Eo, H.J. Park, G.H. and Jeong. J.B. 2020. Induction of apoptosis by Sageretia thea branch extracts through activation of NF-κB signaling pathway in human colorectal cancer cells. Korean Journal of Plant Resources 33(5): 428-435. https://doi.org/10.7732/KJPR.2020.33.5.428
  25. Kwon, K.W., Cho, M.S., Kim, G.N., Lee, S.W. and Jang, K.H. 2009. Photosynthetic characteristics and growth performances of containerized seedling and bare root seedlingof Quercus acutissima growing at different fertilizing schemes. Journal of Korean Forest Society 98(3): 331-338.
  26. Landis, T.D., Tinus, R.W., McDonald, S.E. and Barnett, J.P. 1989. Seedling nutrition and irrigation. The container tree nursery manual Vol. 4. USDA Forest Service. Agriculture-Handbook. Washington. pp. 674.
  27. Lee, K.C., Noh, H.S., Kim, J.W. and Han, S.S. 2012. Physiological responses of Cirsium setidens and Pleurospermum camtschaticum under different shading treatments. Journal of Bio-environment Control 21: 15361.
  28. Oh, S.J. and Koh, S.C. 2017. Photosynthesis and growth responses of soybean (Glycine max Merr.) under Elevated CO2 Conditions. Journal of Environmental Science International 26(5): 601-608. https://doi.org/10.5322/JESI.2017.26.5.601
  29. Pyo, S.J., Lee, Y.J., Park, S.I., Lee, C.I., Park, J.Y. and Sohn, H.Y. 2020. Evaluation of the Anti-thrombosis Activities of the Aerial Parts of Sageretia thea. Jounal of Life Science 30(5): 443-451.
  30. Quoreshi, M. and Timmer, V.R. 2000. Early outplanting performance of nutrient-loaded containerized black spruce seedlings inoculated with Laccaria Biocolor: A bioassay study. Soil Science Society of America Journal 30(5): 744-752.
  31. Ryu, D.U., Bae, J.H., Park, J.H., Cho, S.S., Moon, M.K., Oh, C.Y. and Kim, H.S. 2014. Responses of native trees species in Korea under elevated carbon dioxide condition-open top chamber experiment. Korean Journal of Agricultural and Forest Meteorology 16(3): 199-212. https://doi.org/10.5532/KJAFM.2014.16.3.199
  32. Sharkey, T.D., Bemacchi, C.J., Farquhar, G.D. and Singsaas, E.L. 2007. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell and Environment 30: 1035040.
  33. Song, J.H., Yang, S.G., Choi, G.Y. and Moon, B.C. 2020. Analysis on the trends of Korean health functional food patent based on the medicinal plant resources. Korean Herbal Medicine Informatics 8(1): 25-44.
  34. Song, S.C., Song, C.K. and Kim, J.S. 2014. Vegetation and habitat environment of Sageretia thea in Jeju Island. The Korean Society of Medicinal Crop Science 22(4): 301-305. https://doi.org/10.7783/KJMCS.2014.22.4.301
  35. Song, S.C., Song, C.K. and Kim, J.S. 2015a. Characteristics of seed-germination and fruit for Sageretia thea in Jeju region. The Korean Society of Medicinal Crop Science 23(1): 8-12. https://doi.org/10.7783/KJMCS.2015.23.1.8
  36. Song, S.C., Song, C.K. and Kim, J.S. 2015b. Effect of plant growth regulators on fruit enlargement and optimal harvest time in Sageretia thea (Osback) M. C. Johnst. The Korean Society of Medicinal Crop Science 23(1): 311-318. https://doi.org/10.7783/KJMCS.2015.23.4.311
  37. Strasser, R.J., Srivastava, A. and Tsimilli-Michael, M. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Yunus M, Pathre U and Mohanty P. (eds.). Probing Photosynthesis: Mechanism, regulation and adaptation. Taylor and Francis. London and New York. pp. 445-483.
  38. Thompson, B.E. 1985. Seedlings morphological evaluation. What you can tell by looking: In Duryea, M.L. (ed.), Evaluating seedling quality: Principles, procedures, and predictive abilities of major tests. For. Res. Lab., Oregon State Univ., Corvallis., OR, USA. pp. 59-72.
  39. Wang, Z.X., Chen, L., Ai, J., Qin, H.Y., Liu, Y.X., Xu, P.L., Jiao, Z.Q., Zhao, Y. and Zhang, Q.T. 2012. Photosynthesis and activity of photosystem II in response to drought stress in amur grape (Vitis amurensis Rupr.). Photosynthetica 50(2012): 18996.