DOI QR코드

DOI QR Code

악취성 VOCs 제거를 위한 전해 산화제 OCl-의 생산 최적화

Optimization of Electrolytic Oxidant OCl- Production for Malodorous VOCs Removal

  • 양우영 (숭실대학교 화학공학과) ;
  • 이태호 (숭실대학교 화학공학과) ;
  • 류희욱 (숭실대학교 화학공학과)
  • Yang, Woo Young (Department of Chemical Engineering, Soongsil University) ;
  • Lee, Tae Ho (Department of Chemical Engineering, Soongsil University) ;
  • Ryu, Hee Wook (Department of Chemical Engineering, Soongsil University)
  • 투고 : 2021.03.19
  • 심사 : 2021.05.26
  • 발행 : 2021.06.30

초록

다양한 환경문제를 일으키는 휘발성 유기 화합물(volatile organic compounds, VOCs)은 산업 지대 및 도심의 실내외에서 다양하게 발생한다. 악취성 VOCs는 심미적 불쾌함과 더불어 인체에 심각한 영향을 미칠 수도 있다. 기존에 악취성 VOCs를 저감하는 방식에 비하여, 전기 분해를 통해 생산된 산화제를 이용한 수세정 방식은 오염 물질 저감과 동시에 산화제의 재생이 가능하다는 장점이 있다. 본 연구에서는 염소계 산화제인 OCl-을 생산하기 위한 최적 조건을 연구하였다. 산화 및 환원 전극의 종류와 전해질의 종류, 전해질의 농도 및 전류 밀도를 변화시켰다. 산화 전극은 Ti/IrO2, 환원 전극은 Ti을 사용하였을 때 OCl- 생산이 가장 우수하고 안정적이었다. 전해질의 OCl- 생산 능력은 KCl과 NaCl이 유사하게 나타났으나, 경제적이고 쉽게 구할 수 있는 NaCl이 최적이라고 판단하였다. OCl- 생산 속도가 우수하고 농도가 가장 높게 생산된 NaCl 농도 및 전류 밀도 조건은 0.75 M NaCl, 0.03 A cm-2이었다. 하지만 전력 비용을 고려했을 때 본 실험에서는 1.00 M NaCl, 0.01 A cm-2의 조건의 OCl- 생산이 가장 효율적이었다. 실제 현장 적용시 오염물질의 농도 및 특성에 따라서 전류밀도를 조절하여 OCl-을 생산하는 것이 바람직할 것이다.

Volatile organic compounds (VOCs) occur in indoor and outdoor industrial and urban areas and cause environmental problems. Malodorous VOCs, along with aesthetic discomfort, can have a serious effect on the human body. Compared with the existing method of reducing malodorous VOCs, a wet scrubbing method using an electrolytic oxidant has the advantage of reducing pollutants and regenerating oxidants. This study investigated the optimal conditions for producing OCl-, a chlorine-oxidant. Experiments were conducted by changing the type of anode and cathode electrode, the type of electrolyte, the concentration of electrolytes, and the current density. With Ti/IrO2 as the anode electrode and Ti as the cathode electrode, OClproduction was highest and most stable. Although OCl- production was similar with the use of KCl or NaCl, NaCl is preferable because it is cheap and easy to obtain. The effect of NaCl concentration and current density was examined, and the OCl- production rate and concentration were highest at 0.75 M NaCl and 0.03 A cm-2. However, considering the cost of electric power, OCl- production under the conditions of 1.00 M NaCl and 0.01 A cm-2 was most effective among the conditions examined. It is desirable to produce OCl- by adjusting the current density in accordance with the concentration and characteristics of pollutants.

키워드

과제정보

본 결과물은 환경부의 재원으로 한국환경산업기술원의 환경정책기반 공공기술 개발 사업의 지원을 받아 연구되었습니다(2017000700002).

참고문헌

  1. Annesi - Maesano, I., Baiz, N., Banerjee, S., Rudnai, P., Rive, S., and the S. G., "Indoor Air Quality and Sources in Schools and Related Health Effects," Environ. Health, Part B, 16(8), 491-550 (2013). https://doi.org/10.1080/10937404.2013.853609
  2. Jurvelin, J., "Personal Exposures to Volatile Organic Compounds and Carbonyls: Relationships to Microenvironment Concentrations and Analysis of Sources," Helsinki, Finland, National Public Health Institute: Department of Environmental Health Laboratory of Air Hygiene, (2003).
  3. Zhang, J., Zhang, J., Chen, Q., and Yang, X., "A Critical Review on Studies of Volatile Organic Compound (VOC) Sorption by Building Materials (RP-1097)," TASHRAE Transactions, 108(1), 162-174 (2001).
  4. Park, Y. S., and Ahn, K. H., "Biological Treatment of Textile Wastewater by Anaerobic-Aerobic Reactor System," J. Environ. Health Sci., 27(3), 11-20 (2001).
  5. Wei, W., Cheng, S., Li, G., Wang, G., and Wang, H., "Characteristics of Ozone and Ozone Precursors (VOCs and NOx) around a Petroleum Refinery in Beijing, China," J. Environ. Sci., 26(2), 332-342 (2014). https://doi.org/10.1016/s1001-0742(13)60412-x
  6. Shin, H. M., McKone, T. E., and Bennett, D. H., "Contribution of Low Vapor Pressure-Volatile Organic Compounds (LVP-VOCs) from Consumer Products to Ozone Formation in Urban Atmospheres," Atmos. Environ., 108, 98-106 (2015). https://doi.org/10.1016/j.atmosenv.2015.02.067
  7. Zhang, X., Gao, B., Creamer, A. E., Cao, C., and Li, Y., "Adsorption of VOCs onto Engineered Carbon Materials: A review," J. Hazard. Mater., 338, 102-123 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013
  8. Jo, W. K., and Yang, C. H., "Granular-activated Carbon Adsorption Followed by Annular-type Photocatalytic System for Control of Indoor Aromatic Compounds," Sep. Purif. Technol., 66(3), 438-442 (2009). https://doi.org/10.1016/j.seppur.2009.02.014
  9. Huang, B., Lei, C., Wei, C., and Zeng, G., "Chlorinated Volatile Organic Compounds (Cl-VOCs) in Environment - Sources, Potential Human Health Impacts, and Current Remediation Technologies," Environ. Int., 71, 118-138 (2014). https://doi.org/10.1016/j.envint.2014.06.013
  10. Luengas, A., Barona, A., Hort, C., Gallastegui, G., Platel, V., and Elias., "A Review of Indoor Air Treatment Technologies," Rev. Environ. Sci. Bio/Technol., 14(3), 499-522 (2015). https://doi.org/10.1007/s11157-015-9363-9
  11. Lu, Y., Liu, J., Lu, B., Jiang, A., and Wan, C., "Study on the Removal of Indoor VOCs Using Biotechnology," J. Hazard. Mater., 182(1-3), 204-209 (2010). https://doi.org/10.1016/j.jhazmat.2010.06.016
  12. Yoon, S. M., Kim, J. Y., Park, K. Y., Yoon, S. K., Kil, I. S., Park, H. J., and Rhee, Y. W., "Investigation on Desorption Reaction and Heating Value of Used Activated Carbons Collected from VOC Adsorption Towers," Clean Tech., 16(1), 33-38 (2010).
  13. Yoa, S.-J., and Kim, J.-Y., "Collection Characteristics of Wet-type Multi-Layered and Multi-Staged Porous Plate System," J. of Power Syst. Eng., 18(3), 42-50 (2014).
  14. Jeong, M. S., Seo, J. M., Park, J. H., and Park, J. U., "Development of the Pulse Air Jet Bag Filter Cost Reduction Device," Proceedings of the Korean Environmental Sciences Society Conference, 44-46 (2006).
  15. Kettle, A. J., Albrett, A. M., Chapman, A. L., Dickerhof, N., Forbes, L. V., Khalilova, I., and Turner, R., "Measuring Chlorine Bleach in Biology and Medicine," Biochim. Biophys. Acta Gen. Subj., 1840(2), 781-793 (2014). https://doi.org/10.1016/j.bbagen.2013.07.004
  16. Park, M.-J., Lee, T.-S., and Kang, M., "Characteristics of Chlorine-Based Oxidant Production on Insoluble Electrode," KSWST Jour. Wat. Treat, 25, 27-34 (2017). https://doi.org/10.17640/KSWST.2017.25.6.27
  17. Lee, J.-C., and Park, D.-W., "Generation of Free Chlorine Using RuO2 / Ti Electrode with Various Amount of Ru," J. Korean Soc. Environ. Eng., 34(11), 715-719 (2012). https://doi.org/10.4491/KSEE.2012.34.11.715
  18. Kwon, T. O., Park, B. B., Roh, H. C., and Moon, I. S., "Electrochemical Generation of Chlorine Dioxide from Sodium Chlorite Using Un-Divided Electrochemical Cell: Effect of Anode Materials," Korean Chem. Eng. Res., 48(2), 275-282 (2010).
  19. Catanho, M., Malpass, G. R. P., and Motheo, A. J., "Photoelectrochemical Treatment of the Dye Reactive Red 198 using DSA® Electrodes," Appl. Catal., B, 62(3-4), 193-200 (2006). https://doi.org/10.1016/j.apcatb.2005.07.011
  20. Endoh, E., Otouma, H., and Morimoto, T., "Advanced Low Hydrogen Overvoltage Cathode for Chlor-alkali Electrolysis Cells," Int. J. Hydrog. Energy, 13(4), 207-213 (1988). https://doi.org/10.1016/0360-3199(88)90087-0
  21. Zhang, L. N., Lang, Z. L., Wang, Y. H., Tan, H. Q., Zang, H. Y., Kang, Z. H., and Li, Y. G., "Cable-like Ru/WNO@ C Nanowires for Simultaneous High-efficiency Hydrogen Evolution and Low-Energy Consumption Chlor-alkali Electrolysis," Energy Environ. Sci., 12(8), 2569-2580 (2019). https://doi.org/10.1039/c9ee01647c
  22. Furuya, N., and Aikawa, H., "Comparative Study of Oxygen Cathodes Loaded With Ag and Pt Catalysts in Chlor-alkali Membrane Cells," Electrochim. Acta, 45(25-26), 4251-4256 (2000). https://doi.org/10.1016/S0013-4686(00)00557-0
  23. Kim, J.-Y., Kim, C.-S., Kim, S.-H., and Yoon, J.-Y., "A Review of Chlorine Evolution Mechanism on Dimensionally Stable Anode (DSA®)," Korean Chem. Eng. Res., 53(5), 531-539 (2015). https://doi.org/10.9713/kcer.2015.53.5.531
  24. Kraft, A., "Electrochemical Water Disinfection: a Short Review," Platinum Met. Rev., 52(3), 177-185 (2008). https://doi.org/10.1595/147106708X329273
  25. Kraft, A., Stadelmann, M., Blaschke, M., Kreysig, D., Sandt, B., Schroder, F., and Rennau, J., "Electrochemical Water Disinfection Part I: Hypochlorite Production from Very Dilute Chloride Solutions," J. Appl. Electrochem., 29(7), 859-866 (1999). https://doi.org/10.1023/A:1003650220511
  26. Jeong, J.-S., Kim, C.-S., and Yoon, J.-Y., "The Effect of Electrode Material on the Generation of Oxidants and Microbial Inactivation in the Electrochemical Disinfection Processes," Water Res., 43(4), 895-901 (2009). https://doi.org/10.1016/j.watres.2008.11.033
  27. Le Luu, T., Kim, J.-Y., and Yoon, J.-Y., "Physicochemical Properties of RuO2 and IrO2 Electrodes Affecting Chlorine Evolutions," J. Ind. Eng. Chem., 21, 400-404 (2015). https://doi.org/10.1016/j.jiec.2014.02.052
  28. Jang, S. H., Kim, G. E., Shin, H. M., Song, Y. C., Lee, W. K., and Youn, Y. N., "Study on Removal of Ammonia Nitrogen from Metal Working Fluids using Aluminum Electrode," J. Korea Soc. Waste Manag., 33(7), 710-715 (2016). https://doi.org/10.9786/kswm.2016.33.7.710
  29. Hong, J. H., Keum, D. M., Han, D. S., Park, I. B., Chun, M. S., Ko, K. W., and Lee, J. M., "Mechanical Characteristics of Stainless Steel under Low Temperature Environment," J. Soc. Nav. Archit. Korea, 45(5), 530-537 (2008). https://doi.org/10.3744/SNAK.2008.45.5.530
  30. Wang, Z. B., Hu, H. X., and Zheng, Y. G., "Synergistic Effects of Fluoride and Chloride on General Corrosion Behavior of AISI 316 Stainless Steel and Pure Titanium in H2SO4 Solutions," Corros. Sci., 130, 203-217 (2018). https://doi.org/10.1016/j.corsci.2017.10.028
  31. Ponzano, G. P., "Disinfection by Sodium Hypochlorite: Dialysis Applications," Karger Publishers, 154, 7-23 (2007).
  32. Jeong, J.-W., Kim, J.-H., Kim, B.-S., and Jeong, S.-W., "Characteristics of Electrolyzed Water Manufactured from Various Electrolytic Diaphragm and Electrolyte," Korean J. Food Preserv., 10(1), 99-105 (2003).
  33. Kim, M.-H., Jeong, J.-W., and Cho, Y.-J., "Comparison of Characteristics on Electrolyzed Water Manufactured by Various Electrolytic Factors," Korean J. Food Sci. Technol., 36(3), 416-422 (2004).
  34. Czarnetzki, L. R., and Janssen, L. J. J., "Formation of Hypochlorite, Chlorate and Oxygen during NaCl Electrolysis from Alkaline Solutions at an RuO2/TiO2 anode," J. Appl. Electrochem., 22, 315-324 (1992). https://doi.org/10.1007/BF01092683
  35. Lee, T. H., and Ryu, H. W., "Characteristics of Odorous VOCs Removal by Using Electrolytic Oxidant," J. Odor Indoor Environ., 17(4), 381-388 (2018). https://doi.org/10.15250/joie.2018.17.4.381