과제정보
본 결과물은 환경부의 재원으로 한국환경산업기술원의 환경정책기반 공공기술 개발 사업의 지원을 받아 연구되었습니다(2017000700002).
참고문헌
- Annesi - Maesano, I., Baiz, N., Banerjee, S., Rudnai, P., Rive, S., and the S. G., "Indoor Air Quality and Sources in Schools and Related Health Effects," Environ. Health, Part B, 16(8), 491-550 (2013). https://doi.org/10.1080/10937404.2013.853609
- Jurvelin, J., "Personal Exposures to Volatile Organic Compounds and Carbonyls: Relationships to Microenvironment Concentrations and Analysis of Sources," Helsinki, Finland, National Public Health Institute: Department of Environmental Health Laboratory of Air Hygiene, (2003).
- Zhang, J., Zhang, J., Chen, Q., and Yang, X., "A Critical Review on Studies of Volatile Organic Compound (VOC) Sorption by Building Materials (RP-1097)," TASHRAE Transactions, 108(1), 162-174 (2001).
- Park, Y. S., and Ahn, K. H., "Biological Treatment of Textile Wastewater by Anaerobic-Aerobic Reactor System," J. Environ. Health Sci., 27(3), 11-20 (2001).
- Wei, W., Cheng, S., Li, G., Wang, G., and Wang, H., "Characteristics of Ozone and Ozone Precursors (VOCs and NOx) around a Petroleum Refinery in Beijing, China," J. Environ. Sci., 26(2), 332-342 (2014). https://doi.org/10.1016/s1001-0742(13)60412-x
- Shin, H. M., McKone, T. E., and Bennett, D. H., "Contribution of Low Vapor Pressure-Volatile Organic Compounds (LVP-VOCs) from Consumer Products to Ozone Formation in Urban Atmospheres," Atmos. Environ., 108, 98-106 (2015). https://doi.org/10.1016/j.atmosenv.2015.02.067
- Zhang, X., Gao, B., Creamer, A. E., Cao, C., and Li, Y., "Adsorption of VOCs onto Engineered Carbon Materials: A review," J. Hazard. Mater., 338, 102-123 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013
- Jo, W. K., and Yang, C. H., "Granular-activated Carbon Adsorption Followed by Annular-type Photocatalytic System for Control of Indoor Aromatic Compounds," Sep. Purif. Technol., 66(3), 438-442 (2009). https://doi.org/10.1016/j.seppur.2009.02.014
- Huang, B., Lei, C., Wei, C., and Zeng, G., "Chlorinated Volatile Organic Compounds (Cl-VOCs) in Environment - Sources, Potential Human Health Impacts, and Current Remediation Technologies," Environ. Int., 71, 118-138 (2014). https://doi.org/10.1016/j.envint.2014.06.013
- Luengas, A., Barona, A., Hort, C., Gallastegui, G., Platel, V., and Elias., "A Review of Indoor Air Treatment Technologies," Rev. Environ. Sci. Bio/Technol., 14(3), 499-522 (2015). https://doi.org/10.1007/s11157-015-9363-9
- Lu, Y., Liu, J., Lu, B., Jiang, A., and Wan, C., "Study on the Removal of Indoor VOCs Using Biotechnology," J. Hazard. Mater., 182(1-3), 204-209 (2010). https://doi.org/10.1016/j.jhazmat.2010.06.016
- Yoon, S. M., Kim, J. Y., Park, K. Y., Yoon, S. K., Kil, I. S., Park, H. J., and Rhee, Y. W., "Investigation on Desorption Reaction and Heating Value of Used Activated Carbons Collected from VOC Adsorption Towers," Clean Tech., 16(1), 33-38 (2010).
- Yoa, S.-J., and Kim, J.-Y., "Collection Characteristics of Wet-type Multi-Layered and Multi-Staged Porous Plate System," J. of Power Syst. Eng., 18(3), 42-50 (2014).
- Jeong, M. S., Seo, J. M., Park, J. H., and Park, J. U., "Development of the Pulse Air Jet Bag Filter Cost Reduction Device," Proceedings of the Korean Environmental Sciences Society Conference, 44-46 (2006).
- Kettle, A. J., Albrett, A. M., Chapman, A. L., Dickerhof, N., Forbes, L. V., Khalilova, I., and Turner, R., "Measuring Chlorine Bleach in Biology and Medicine," Biochim. Biophys. Acta Gen. Subj., 1840(2), 781-793 (2014). https://doi.org/10.1016/j.bbagen.2013.07.004
- Park, M.-J., Lee, T.-S., and Kang, M., "Characteristics of Chlorine-Based Oxidant Production on Insoluble Electrode," KSWST Jour. Wat. Treat, 25, 27-34 (2017). https://doi.org/10.17640/KSWST.2017.25.6.27
- Lee, J.-C., and Park, D.-W., "Generation of Free Chlorine Using RuO2 / Ti Electrode with Various Amount of Ru," J. Korean Soc. Environ. Eng., 34(11), 715-719 (2012). https://doi.org/10.4491/KSEE.2012.34.11.715
- Kwon, T. O., Park, B. B., Roh, H. C., and Moon, I. S., "Electrochemical Generation of Chlorine Dioxide from Sodium Chlorite Using Un-Divided Electrochemical Cell: Effect of Anode Materials," Korean Chem. Eng. Res., 48(2), 275-282 (2010).
- Catanho, M., Malpass, G. R. P., and Motheo, A. J., "Photoelectrochemical Treatment of the Dye Reactive Red 198 using DSA® Electrodes," Appl. Catal., B, 62(3-4), 193-200 (2006). https://doi.org/10.1016/j.apcatb.2005.07.011
- Endoh, E., Otouma, H., and Morimoto, T., "Advanced Low Hydrogen Overvoltage Cathode for Chlor-alkali Electrolysis Cells," Int. J. Hydrog. Energy, 13(4), 207-213 (1988). https://doi.org/10.1016/0360-3199(88)90087-0
- Zhang, L. N., Lang, Z. L., Wang, Y. H., Tan, H. Q., Zang, H. Y., Kang, Z. H., and Li, Y. G., "Cable-like Ru/WNO@ C Nanowires for Simultaneous High-efficiency Hydrogen Evolution and Low-Energy Consumption Chlor-alkali Electrolysis," Energy Environ. Sci., 12(8), 2569-2580 (2019). https://doi.org/10.1039/c9ee01647c
- Furuya, N., and Aikawa, H., "Comparative Study of Oxygen Cathodes Loaded With Ag and Pt Catalysts in Chlor-alkali Membrane Cells," Electrochim. Acta, 45(25-26), 4251-4256 (2000). https://doi.org/10.1016/S0013-4686(00)00557-0
- Kim, J.-Y., Kim, C.-S., Kim, S.-H., and Yoon, J.-Y., "A Review of Chlorine Evolution Mechanism on Dimensionally Stable Anode (DSA®)," Korean Chem. Eng. Res., 53(5), 531-539 (2015). https://doi.org/10.9713/kcer.2015.53.5.531
- Kraft, A., "Electrochemical Water Disinfection: a Short Review," Platinum Met. Rev., 52(3), 177-185 (2008). https://doi.org/10.1595/147106708X329273
- Kraft, A., Stadelmann, M., Blaschke, M., Kreysig, D., Sandt, B., Schroder, F., and Rennau, J., "Electrochemical Water Disinfection Part I: Hypochlorite Production from Very Dilute Chloride Solutions," J. Appl. Electrochem., 29(7), 859-866 (1999). https://doi.org/10.1023/A:1003650220511
- Jeong, J.-S., Kim, C.-S., and Yoon, J.-Y., "The Effect of Electrode Material on the Generation of Oxidants and Microbial Inactivation in the Electrochemical Disinfection Processes," Water Res., 43(4), 895-901 (2009). https://doi.org/10.1016/j.watres.2008.11.033
- Le Luu, T., Kim, J.-Y., and Yoon, J.-Y., "Physicochemical Properties of RuO2 and IrO2 Electrodes Affecting Chlorine Evolutions," J. Ind. Eng. Chem., 21, 400-404 (2015). https://doi.org/10.1016/j.jiec.2014.02.052
- Jang, S. H., Kim, G. E., Shin, H. M., Song, Y. C., Lee, W. K., and Youn, Y. N., "Study on Removal of Ammonia Nitrogen from Metal Working Fluids using Aluminum Electrode," J. Korea Soc. Waste Manag., 33(7), 710-715 (2016). https://doi.org/10.9786/kswm.2016.33.7.710
- Hong, J. H., Keum, D. M., Han, D. S., Park, I. B., Chun, M. S., Ko, K. W., and Lee, J. M., "Mechanical Characteristics of Stainless Steel under Low Temperature Environment," J. Soc. Nav. Archit. Korea, 45(5), 530-537 (2008). https://doi.org/10.3744/SNAK.2008.45.5.530
- Wang, Z. B., Hu, H. X., and Zheng, Y. G., "Synergistic Effects of Fluoride and Chloride on General Corrosion Behavior of AISI 316 Stainless Steel and Pure Titanium in H2SO4 Solutions," Corros. Sci., 130, 203-217 (2018). https://doi.org/10.1016/j.corsci.2017.10.028
- Ponzano, G. P., "Disinfection by Sodium Hypochlorite: Dialysis Applications," Karger Publishers, 154, 7-23 (2007).
- Jeong, J.-W., Kim, J.-H., Kim, B.-S., and Jeong, S.-W., "Characteristics of Electrolyzed Water Manufactured from Various Electrolytic Diaphragm and Electrolyte," Korean J. Food Preserv., 10(1), 99-105 (2003).
- Kim, M.-H., Jeong, J.-W., and Cho, Y.-J., "Comparison of Characteristics on Electrolyzed Water Manufactured by Various Electrolytic Factors," Korean J. Food Sci. Technol., 36(3), 416-422 (2004).
- Czarnetzki, L. R., and Janssen, L. J. J., "Formation of Hypochlorite, Chlorate and Oxygen during NaCl Electrolysis from Alkaline Solutions at an RuO2/TiO2 anode," J. Appl. Electrochem., 22, 315-324 (1992). https://doi.org/10.1007/BF01092683
- Lee, T. H., and Ryu, H. W., "Characteristics of Odorous VOCs Removal by Using Electrolytic Oxidant," J. Odor Indoor Environ., 17(4), 381-388 (2018). https://doi.org/10.15250/joie.2018.17.4.381