Acknowledgement
The research described in this paper was financially supported by the Algerian Ministry ofHigher Education and Scientific Research through the cooperation project PROFAS B+. The authors would also like to acknowledge the support of the Thematic Agency for Research in Science and Technology of Algeria.
References
- Abd El Aleem, S., Heikal, M. and Morsi, W.M. (2014), "Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica", Constr. Build. Mater., 59, 151-160. https://doi.org/10.1016/j.conbuildmat.2014.02.039.
- Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963.
- Alavi, R. and Mirzadeh, H. (2012), "Modeling the compressive strength of cement mortar nano-composites", Comput. Concrete, 10, 49-57. http://doi.org/10.12989/cac.2012.10.1.049.
- Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., 6(6), 585-610. http://doi.org/10.12989/acc.2018.6.6.585.
- Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140.
- Azmi, M., Kolahchi, R. and Bidgoli, M.R. (2019), "Dynamic analysis of concrete column reinforced with SiO2 nanoparticles subjected to blast load", Adv. Concrete Constr., 7(1), 51-63. http://dx.doi.org/10.12989/acc.2019.7.1.051.
- Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. http://doi.org/10.12989/sem.2017.62.6.695.
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. http://doi.org/10.12989/scs.2015.18.2.409.
- El-Feky, M.S., Passant Youssef, A.E.T. and Serag, M. (2019), "Indirect sonication effect on the dispersion, reactivity, and microstructure of ordinary Portland cement matrix", AIMS Mater. Sci., 6(5), 781-797. http://doi.org/10.3934/matersci.2019.5.781.
- Haruehansapong, S., Pulngern, T. and Chucheepsakul, S. (2014), "Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2", Constr. Build. Mater., 50, 471-477. https://doi.org/10.1016/j.conbuildmat.2013.10.002.
- Jones, R.M. (1999), Mechanics of Composite Materials, Taylor & Francis, Philadelphia.
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
- Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.
- Qing, Y. Zenan, Z., Deyu, K. and Rongshen, C. (2007), "Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume", Constr. Build. Mater., 21, 539-545. https://doi.org/10.1016/j.conbuildmat.2005.09.001.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
- Rupasinghe, M., Mendis, P., Tuan, N., Ngoc, N.T. and Sofi, M. (2017), "Compressive strength prediction of nano-silica incorporated cement systems based on a multiscale approach", Mater. Des., 115, 379-392. https://doi.org/10.1016/j.matdes.2016.11.058.
- Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C. and Gao, H. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", J. Eng. Mater. Technol., ASME, 126(3), 250-270. https://doi.org/10.1115/1.1751182.
- Shokravi, M. (2017), "Vibration analysis of silica nanoparticlesreinforced concrete beams considering agglomeration effects", Comput. Concrete, 19(3), 333-338. https://doi.org/10.12989/cac.2017.19.3.333.
- Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62, 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.
- Timoshenko, S. and Gere, J.M. (1972), Mechanics of Materials, Van Nostrand Reinhold Co., New York.
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
- Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behavior of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.