DOI QR코드

DOI QR Code

On the static behavior of nano Si02 based concrete beams resting on an elastic foundation

  • Harrat, Zouaoui R. (Laboratoire des Structures et Matériaux Avancés dans le Génie Civil et Travaux Publics, University of Djillali Liabes) ;
  • Amziane, Sofiane (Clermont Auvergne University, CNRS, Clermont INP, Institut Pascal) ;
  • Krour, Baghdad (Laboratoire des Structures et Matériaux Avancés dans le Génie Civil et Travaux Publics, University of Djillali Liabes) ;
  • Bouiadjra, Mohamed Bachir (Laboratoire des Structures et Matériaux Avancés dans le Génie Civil et Travaux Publics, University of Djillali Liabes)
  • Received : 2020.09.22
  • Accepted : 2021.04.28
  • Published : 2021.06.25

Abstract

The present study investigates the static behavior of concrete beams impregnated with silicon dioxide (SiO2) nanoparticles. Nanosilica, by virtue of its small particle size, can affect the microstructure of concretes and enhance their properties. Voigt's model is used to take account of the agglomeration effect and obtain the equivalent nano-composite properties. Furthermore, the reinforced concrete beam is simulated mathematically with higher-order shear deformation theory because of its simplicity and accuracy. The soil medium is simulated with Pasternak elastic foundation, including a shear layer, and Winkler spring. The equilibrium equations are derived using the principle of virtual work, and using Hamilton's principle, the energy equations are obtained. Also, analytical methods are employed to obtain the closed-form solutions of simply supported beams. Numerical results are presented, considering the effect of different parameters such as the volume percent of SiO2 nanoparticles, mechanical loads, geometrical parameters, and soil medium, on the static behavior of the beam. The majority of findings from this work indicate that the use of SiO2 nanoparticles in concretes increases their mechanical resistance, and that the deflections and stresses decrease. In addition, the elastic foundation has a significant impact on the bending of concrete beams.

Keywords

Acknowledgement

The research described in this paper was financially supported by the Algerian Ministry ofHigher Education and Scientific Research through the cooperation project PROFAS B+. The authors would also like to acknowledge the support of the Thematic Agency for Research in Science and Technology of Algeria.

References

  1. Abd El Aleem, S., Heikal, M. and Morsi, W.M. (2014), "Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica", Constr. Build. Mater., 59, 151-160. https://doi.org/10.1016/j.conbuildmat.2014.02.039.
  2. Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963.
  3. Alavi, R. and Mirzadeh, H. (2012), "Modeling the compressive strength of cement mortar nano-composites", Comput. Concrete, 10, 49-57. http://doi.org/10.12989/cac.2012.10.1.049.
  4. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., 6(6), 585-610. http://doi.org/10.12989/acc.2018.6.6.585.
  5. Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140.
  6. Azmi, M., Kolahchi, R. and Bidgoli, M.R. (2019), "Dynamic analysis of concrete column reinforced with SiO2 nanoparticles subjected to blast load", Adv. Concrete Constr., 7(1), 51-63. http://dx.doi.org/10.12989/acc.2019.7.1.051.
  7. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. http://doi.org/10.12989/sem.2017.62.6.695.
  8. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. http://doi.org/10.12989/scs.2015.18.2.409.
  9. El-Feky, M.S., Passant Youssef, A.E.T. and Serag, M. (2019), "Indirect sonication effect on the dispersion, reactivity, and microstructure of ordinary Portland cement matrix", AIMS Mater. Sci., 6(5), 781-797. http://doi.org/10.3934/matersci.2019.5.781.
  10. Haruehansapong, S., Pulngern, T. and Chucheepsakul, S. (2014), "Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2", Constr. Build. Mater., 50, 471-477. https://doi.org/10.1016/j.conbuildmat.2013.10.002.
  11. Jones, R.M. (1999), Mechanics of Composite Materials, Taylor & Francis, Philadelphia.
  12. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
  13. Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.
  14. Qing, Y. Zenan, Z., Deyu, K. and Rongshen, C. (2007), "Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume", Constr. Build. Mater., 21, 539-545. https://doi.org/10.1016/j.conbuildmat.2005.09.001.
  15. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
  16. Rupasinghe, M., Mendis, P., Tuan, N., Ngoc, N.T. and Sofi, M. (2017), "Compressive strength prediction of nano-silica incorporated cement systems based on a multiscale approach", Mater. Des., 115, 379-392. https://doi.org/10.1016/j.matdes.2016.11.058.
  17. Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C. and Gao, H. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", J. Eng. Mater. Technol., ASME, 126(3), 250-270. https://doi.org/10.1115/1.1751182.
  18. Shokravi, M. (2017), "Vibration analysis of silica nanoparticlesreinforced concrete beams considering agglomeration effects", Comput. Concrete, 19(3), 333-338. https://doi.org/10.12989/cac.2017.19.3.333.
  19. Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62, 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.
  20. Timoshenko, S. and Gere, J.M. (1972), Mechanics of Materials, Van Nostrand Reinhold Co., New York.
  21. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  22. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behavior of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.