참고문헌
- Afify, M.R. and Salem, M.M. (2015), "Bond strength of concrete containing different recycled coarse aggregates", Concrete Res. Lett., 6(2), 93-111.
- Afroughsabet, V. and Ozbakkaloglu, T. (2015), "Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers", Constr. Build. Mater., 94, 73-82. https://doi.org/10.1016/j.conbuildmat.2015.06.051.
- Ajri, M., Rastgoo, A. and Fakhrabadi Mir Masoud, S. (2019), "Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators", Struct. Eng. Mech., 70(5), 623-637. https://doi.org/10.12989/sem.2019.70.5.623.
- Bhargava, K., Ghosh, A., Mori, Y. and Ramanujam, S. (2007), "Corrosion-induced bond strength degradation in reinforced concrete-Analytical and empirical models", Nucl. Eng. Des., 237(11), 1140-1157. https://doi.org/10.1016/j.nucengdes.2007.01.010.
- Bilir, T., Gencel, O. and Topcu, I.B. (2015), "Properties of mortars with fly ash as fine aggregate", Constr. Build. Mater., 93, 782-789. https://doi.org/10.1016/j.conbuildmat.2015.05.095.
- Cao, Q., Wang, R., Jia, J., Zhou, C. and Lin, Z. (2020), "A comparative study of combined treatments for enhanced earlyage cracking control of self-consolidating concrete", Constr. Build. Mater., 248, 23-41. https://doi.org/10.1016/j.conbuildmat.2020.118473.
- Castel, A., Vidal, T., Viriyametanont, K. and Francois, R. (2006), "Effect of reinforcing bar orientation and location on bond with self-consolidating concrete", ACI Struct. J., 103(4), 55-69.
- CEN (2009), European Committee for Standardization, EN 12390e3, Testing Hardened Concrete-Part 3: Compressive Strength of Test Specimens, Brussels, Belgium: CEN.
- Chan, Y.W., Chen, Y.S. and Liu, Y.S. (2003), "Development of bond strength of reinforcement steel in self-consolidating concrete", Struct. J., 100(4), 490-498.
- Chupin, O., Piau, J.M., Hammoum, F. and Bouron, S. (2018), "Experimental study and modeling of the behavior of partially saturated asphalt concrete under freezing condition", Constr. Build. Mater., 163, 169-178. https://doi.org/10.1016/j.conbuildmat.2017.12.070.
- Dehestani, M., Asadi, A. and Mousavi, S. (2017), "On discrete element method for rebar-concrete interaction", Constr. Build. Mater., 151, 220-227. https://doi.org/10.1016/j.conbuildmat.2017.06.086.
- Del Coz-Diaz, J.J., Martinez-Martinez, J.E., Alonso-Martinez, M. and Rabanal, F.P.A. (2020), "Comparative study of lightweight and normal concrete composite slabs behaviour under fire conditions", Eng. Struct., 207, 110-126. https://doi.org/10.1016/j.engstruct.2020.110196.
- Esmaeili, J. and Andalibi, K. (2013), "Investigation of the effects of nano-silica on the properties of concrete in comparison with micro-silica", Int. J. Nano Dimens., 12(4), 321-328.
- Esmaeili, J., Andalibi, K., Gencel, O., Maleki, F.K. and Maleki, V.A. (2021), "Pull-out and bond-slip performance of steel fibers with various ends shapes embedded in polymer-modified concrete", Constr. Build. Mater., 271, 12-31. https://doi.org/10.1016/j.conbuildmat.2020.121531.
- Farzaneh, A., Esrafili, M.D. and Mermer O. (2020), "Development of TiO2 nanofibers based semiconducting humidity sensor: adsorption kinetics and DFT computations", Mater. Chem. Phys., 239, 12-29. https://doi.org/10.1016/j.matchemphys.2019.121981.
- Farzaneh, A., Mohammadzadeh, A., Esrafili, M.D. and Mermer, O. (2019), "Experimental and theoretical study of TiO2 based nanostructured semiconducting humidity sensor", Ceram. Int., 45(7), 8362-8369. https://doi.org/10.1016/j.ceramint.2019.01.144.
- Gencel, O., Brostow, W., Datashvili, T. and Thedford, M. (2011), "Workability and mechanical performance of steel fiber-reinforced self-compacting concrete with fly ash", Compos. Interf., 18(2), 169-184. https://doi.org/10.1163/092764411X567567.
- Gencel, O., Cengiz, O., Koksal, F., Martinez-Barrera, G., Brostow, W. and Polat, H. (2013), "Fuzzy logic model for prediction of properties of fiber reinforced self-compacting concrete", Mater. Sci., 19(2), 203-215. https://doi.org/10.5755/j01.ms.19.2.4439.
- Gencel, O., del Coz Diaz, J.J., Sutcu, M., Kocyigit, F., Rabanal, F.P.A., Alonso-Martinez, M. and Barrera, G.M. (2021), "Thermal performance optimization of lightweight concrete/EPS layered composite building blocks", Int. J. Thermophys., 42(4), 52-69. https://doi.org/10.1007/s10765-021-02804-1.
- Gencel, O., Ozel, C., Koksal, F., Erdogmus, E., Martinez-Barrera, G. and Brostow, W. (2012), "Properties of concrete paving blocks made with waste marble", J. Clean. Prod., 21(1), 62-70. https://doi.org/10.1016/j.jclepro.2011.08.023.
- Greco, F., Leonetti, L. and Luciano, R. (2015), "A multiscale model for the numerical simulation of the anchor bolt pull-out test in lightweight aggregate concrete", Constr. Build. Mater., 95, 860-874. https://doi.org/10.1016/j.conbuildmat.2015.07.170.
- He, Z. and Xiao, Y. (2020), "Experimental study on axial pull-out behavior of steel rebars glued-in glubam", J. Mater. Civil Eng., 32(3), 34-51. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003080.
- Ibrahim, A.M., Fahmy, M.F. and Wu, Z. (2016), "3D finite element modeling of bond-controlled behavior of steel and basalt FRP-reinforced concrete square bridge columns under lateral loading", Compos. Struct., 143, 33-52. https://doi.org/10.1016/j.compstruct.2016.01.014.
- Ji, T. (2005), "Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2", Cement Concrete Res., 35(10), 1943-1947. https://doi.org/10.1016/j.cemconres.2005.07.004.
- Joshaghani, A., Balapour, M., Mashhadian, M. and Ozbakkaloglu, T. (2020), "Effects of nano-TiO2, nano-Al2O3, and nano-Fe2O3 on rheology, mechanical and durability properties of self-consolidating concrete (SCC): An experimental study", Constr. Build. Mater., 245, 26-37. https://doi.org/10.1016/j.conbuildmat.2020.118444.
- Kazim, T. (2014), "Bond strength of tension lap-splices in full scale self-compacting concrete beams", Turk. J. Eng. Environ. Sci., 32(6), 377-386.
- Khan, U., Al-Osta, M.A. and Ibrahim, A. (2017), "Modeling shear behavior of reinforced concrete beams strengthened with externally bonded CFRP sheets", Struct. Eng. Mech., 61(1), 125-142. https://doi.org/10.12989/sem.2017.61.1.125.
- Lepakshi, R. and Reddy, B.V. (2020), "Bond strength of rebars in cement stabilised rammed earth", Constr. Build. Mater., 255, 112-136. https://doi.org/10.1016/j.conbuildmat.2020.119405.
- Li, H., Xiao, H.G., Yuan, J. and Ou, J. (2004), "Microstructure of cement mortar with nano-particles", Compos. Part B: Eng., 35(2), 185-189. https://doi.org/10.1016/S1359-8368(03)00052-0.
- Li, Z., Deng, Z., Yang, H. and Wang, H. (2020), "Bond behavior between recycled aggregate concrete and deformed rebar after Freeze-thaw damage", Constr. Build. Mater., 250, 12-35. https://doi.org/10.1016/j.conbuildmat.2020.118805.
- Liu, R., Xiao, H., Geng, J., Du, J. and Liu, M. (2020), "Effect of nano-CaCO3 and nano-SiO2 on improving the properties of carbon fibre-reinforced concrete and their pore-structure models", Constr. Build. Mater., 244, 23-42. https://doi.org/10.1016/j.conbuildmat.2020.118297.
- Liu, X., Liu, Y., Wu, T. and Wei, H. (2020), "Bond-slip properties between lightweight aggregate concrete and rebar", Constr. Build. Mater., 255, 119-125. https://doi.org/10.1016/j.conbuildmat.2020.119355.
- Lotfy, A., Hossain, K.M. and Lachemi, M. (2014), "Application of statistical models in proportioning lightweight self-consolidating concrete with expanded clay aggregates", Constr. Build. Mater., 65, 450-469. https://doi.org/10.1016/j.conbuildmat.2014.05.027.
- Lu, Y., Liu, Z., Li, S. and Li, N. (2018), "Bond behavior of steel fibers reinforced self-stressing and self-compacting concrete filled steel tube columns", Constr. Build. Mater., 158, 894-909. https://doi.org/10.1016/j.conbuildmat.2017.10.085.
- MacGregor, J.G., Wight, J.K., Teng, S. and Irawan, P. (1997), Reinforced Concrete: Mechanics and Design, Prentice Hall Upper Saddle River, NJ.
- Michal, M. and Keuser, M. (2018), Bond Tests Under High Loading Rates. High Tech Concrete: Where Technology and Engineering Meet, Springer.
- Naaman, A.E., Namur, G.G., Alwan, J.M. and Najm, H.S. (1991), "Fiber pullout and bond slip. I: Analytical study", J. Struct. Eng., 117(9), 2769-2790. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:9(2769).
- Ozbakkaloglu, T., Fang, C. and Gholampour, A. (2017), "Influence of FRP anchor configuration on the behavior of FRP plates externally bonded on concrete members", Eng. Struct., 133, 133-150. https://doi.org/10.1016/j.engstruct.2016.12.005.
- Ozbolt, J., Orsanic, F. and Balabanic, G. (2014), "Modeling pullout resistance of corroded reinforcement in concrete: Coupled three-dimensional finite element model", Cement Concrete Compos., 46, 41-55. https://doi.org/10.1016/j.cemconcomp.2013.10.014.
- Pop, I., De Schutter, G., Desnerck, P. and Onet, T. (2013), "Bond between powder type self-compacting concrete and steel reinforcement", Constr. Build. Mater., 41, 824-833. https://doi.org/10.1016/j.conbuildmat.2012.12.029.
- Qing, Y., Zenan, Z., Deyu, K. and Rongshen, C. (2007), "Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume", Constr. Build. Mater., 21(3), 539-545. https://doi.org/10.1016/j.conbuildmat.2005.09.001.
- Rezaee, M. and Maleki, V.A. (2015), "An analytical solution for vibration analysis of carbon nanotube conveying viscose fluid embedded in visco-elastic medium", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 229(4), 644-650. https://doi.org/10.1177/0954406214538011.
- Shafeek, A.M., Khedr, M., El-Dek, S. and Shehata, N. (2020), "Influence of ZnO nanoparticle ratio and size on mechanical properties and whiteness of White Portland Cement", Appl. Nanosci., 10, 3603-3615. https://doi.org/10.1007/s13204-020-01444-5.
- Singh, L., Karade, S., Bhattacharyya, S., Yousuf, M. and Ahalawat, S. (2013), "Beneficial role of nanosilica in cement based materials-A review", Constr. Build. Mater., 47, 1069-1077. https://doi.org/10.1016/j.conbuildmat.2013.05.052.
- Solomos, G. and Berra, M. (2010), "Rebar pullout testing under dynamic Hopkinson bar induced impulsive loading", Mater. Struct., 43(1-2), 247-260. https://doi.org/10.1617/s11527-009-9485-z.
- Tang, C.W. (2017), "Uniaxial bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete", Struct. Eng. Mech., 62, 651-661. https://doi.org/10.12989/sem.2017.62.5.651.
- Thomas, C., De Brito, J., Cimentada, A. and Sainz-Aja, J. (2020), "Macro-and micro-properties of multi-recycled aggregate concrete", J. Clean. Prod., 245, 45-62. https://doi.org/10.1016/j.jclepro.2019.118843
- Trezos, K.G., Sfikas, I.P., Palmos, M.S. and Sotiropoulou, E.K. (2010), Top-Bar Effect in Self-Compacting Concrete Elements. Design, Production and Placement of Self-Consolidating Concrete, Springer.
- Uygunoglu, T., Brostow, W., Gencel, O. and Topcu, I.B. (2013), "Bond strength of polymer lightweight aggregate concrete", Polym. Ccompos., 34(12), 2125-2132. https://doi.org/10.1002/pc.22621.
- Vahidi Pashaki, P., Pouya, M. and Maleki, V.A. (2018), "Highspeed cryogenic machining of the carbon nanotube reinforced nanocomposites: Finite element analysis and simulation", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(11), 1927-1936. https://doi.org/10.1177/0954406217714012.
- Valcuende, M. and Parra, C. (2009), "Bond behaviour of reinforcement in self-compacting concretes", Constr. Build. Mater., 23(1), 162-170. https://doi.org/10.1016/j.conbuildmat.2008.01.007.
- Veljkovic, A., Carvelli, V., Haffke, M.M. and Pahn, M. (2017), "Concrete cover effect on the bond of GFRP bar and concrete under static loading", Compos. Part B: Eng., 124, 40-53. https://doi.org/10.1016/j.compositesb.2017.05.054.
- Wardeh, G., Ghorbel, E., Gomart, H. and Fiorio, B. (2017), "Experimental and analytical study of bond behavior between recycled aggregate concrete and steel bars using a pullout test", Struct. Concrete, 18(5), 811-825. https://doi.org/10.1002/suco.201600155.
- Yan, F., Lin, Z., Zhang, D., Gao, Z. and Li, M. (2017), "Experimental study on bond durability of glass fiber reinforced polymer bars in concrete exposed to harsh environmental agents: freeze-thaw cycles and alkaline-saline solution", Compos. Part B: Eng., 116, 406-421. https://doi.org/10.1016/j.compositesb.2016.10.083.
- Yoo, D.Y., Kang, S.T., Banthia, N. and Yoon, Y.S. (2017), "Nonlinear finite element analysis of ultra-high-performance fiber-reinforced concrete beams", Int. J. Damage Mech., 26(5), 735-757. https://doi.org/10.1177/1056789515612559.
- Zhang, J., Ma, G., Huang, Y., Aslani, F. and Nener, B. (2019), "Modelling uniaxial compressive strength of lightweight selfcompacting concrete using random forest regression", Constr. Build. Mater., 210, 713-719. https://doi.org/10.1016/j.conbuildmat.2019.03.189.
- Zhang, L., Peng, M., Chang, D. and Xu, Y. (2016), Dam Failure Mechanisms and Risk Assessment, John Wiley & Sons.
- Zhang, X., Ou, J. and Wu, Z. (2017), "Effect of circumferentially monuniform lateral tension on bond behavior between plain round bars and concrete: Analytical study", J. Struct. Eng., 143(12), 34-51. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001903.