DOI QR코드

DOI QR Code

Pull-out strength between Nano-SiO2 contained light-weight self-consolidating concrete and GFRP and steel bars

  • Received : 2020.09.22
  • Accepted : 2021.04.28
  • Published : 2021.06.25

Abstract

In this study, the effect of SiO2 nanoparticles on the bonding behavior of steel and glass fiber reinforced polymer (GFRP) bar embedded in contained Light-weight Self-Consolidating Concrete (LWSCC) has been studied experimentally and numerically. The measurement of the mechanical properties of LWSCC modified with SiO2 nanoparticles, including compressive and tensile strength, elastic modulus and density were also carried out. Studies are conducted on 7, and 28-day aged LWSCC samples containing 0, 2 and 5% SiO2 nanoparticles with 12 mm and 16 mm diameter GFRP and steel bars. The results show that LWSCC modified with SiO2 nanoparticles increases the bonding strength between concrete and bar. In LWSCC with 2 and 5 wt.% SiO2, the maximum pull-out force of 16 mm diameter steel bar is increased by 48.5% and 54.7%, respectively, compared to the LWSCC without nanoparticle addition. Also, bonding improvement between GFRP bars with a diameter of 16mm and LWSCC having 2 and 5 wt.% SiO2 is 32.3% and 40%, respectively.

Keywords

References

  1. Afify, M.R. and Salem, M.M. (2015), "Bond strength of concrete containing different recycled coarse aggregates", Concrete Res. Lett., 6(2), 93-111.
  2. Afroughsabet, V. and Ozbakkaloglu, T. (2015), "Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers", Constr. Build. Mater., 94, 73-82. https://doi.org/10.1016/j.conbuildmat.2015.06.051.
  3. Ajri, M., Rastgoo, A. and Fakhrabadi Mir Masoud, S. (2019), "Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators", Struct. Eng. Mech., 70(5), 623-637. https://doi.org/10.12989/sem.2019.70.5.623.
  4. Bhargava, K., Ghosh, A., Mori, Y. and Ramanujam, S. (2007), "Corrosion-induced bond strength degradation in reinforced concrete-Analytical and empirical models", Nucl. Eng. Des., 237(11), 1140-1157. https://doi.org/10.1016/j.nucengdes.2007.01.010.
  5. Bilir, T., Gencel, O. and Topcu, I.B. (2015), "Properties of mortars with fly ash as fine aggregate", Constr. Build. Mater., 93, 782-789. https://doi.org/10.1016/j.conbuildmat.2015.05.095.
  6. Cao, Q., Wang, R., Jia, J., Zhou, C. and Lin, Z. (2020), "A comparative study of combined treatments for enhanced earlyage cracking control of self-consolidating concrete", Constr. Build. Mater., 248, 23-41. https://doi.org/10.1016/j.conbuildmat.2020.118473.
  7. Castel, A., Vidal, T., Viriyametanont, K. and Francois, R. (2006), "Effect of reinforcing bar orientation and location on bond with self-consolidating concrete", ACI Struct. J., 103(4), 55-69.
  8. CEN (2009), European Committee for Standardization, EN 12390e3, Testing Hardened Concrete-Part 3: Compressive Strength of Test Specimens, Brussels, Belgium: CEN.
  9. Chan, Y.W., Chen, Y.S. and Liu, Y.S. (2003), "Development of bond strength of reinforcement steel in self-consolidating concrete", Struct. J., 100(4), 490-498.
  10. Chupin, O., Piau, J.M., Hammoum, F. and Bouron, S. (2018), "Experimental study and modeling of the behavior of partially saturated asphalt concrete under freezing condition", Constr. Build. Mater., 163, 169-178. https://doi.org/10.1016/j.conbuildmat.2017.12.070.
  11. Dehestani, M., Asadi, A. and Mousavi, S. (2017), "On discrete element method for rebar-concrete interaction", Constr. Build. Mater., 151, 220-227. https://doi.org/10.1016/j.conbuildmat.2017.06.086.
  12. Del Coz-Diaz, J.J., Martinez-Martinez, J.E., Alonso-Martinez, M. and Rabanal, F.P.A. (2020), "Comparative study of lightweight and normal concrete composite slabs behaviour under fire conditions", Eng. Struct., 207, 110-126. https://doi.org/10.1016/j.engstruct.2020.110196.
  13. Esmaeili, J. and Andalibi, K. (2013), "Investigation of the effects of nano-silica on the properties of concrete in comparison with micro-silica", Int. J. Nano Dimens., 12(4), 321-328.
  14. Esmaeili, J., Andalibi, K., Gencel, O., Maleki, F.K. and Maleki, V.A. (2021), "Pull-out and bond-slip performance of steel fibers with various ends shapes embedded in polymer-modified concrete", Constr. Build. Mater., 271, 12-31. https://doi.org/10.1016/j.conbuildmat.2020.121531.
  15. Farzaneh, A., Esrafili, M.D. and Mermer O. (2020), "Development of TiO2 nanofibers based semiconducting humidity sensor: adsorption kinetics and DFT computations", Mater. Chem. Phys., 239, 12-29. https://doi.org/10.1016/j.matchemphys.2019.121981.
  16. Farzaneh, A., Mohammadzadeh, A., Esrafili, M.D. and Mermer, O. (2019), "Experimental and theoretical study of TiO2 based nanostructured semiconducting humidity sensor", Ceram. Int., 45(7), 8362-8369. https://doi.org/10.1016/j.ceramint.2019.01.144.
  17. Gencel, O., Brostow, W., Datashvili, T. and Thedford, M. (2011), "Workability and mechanical performance of steel fiber-reinforced self-compacting concrete with fly ash", Compos. Interf., 18(2), 169-184. https://doi.org/10.1163/092764411X567567.
  18. Gencel, O., Cengiz, O., Koksal, F., Martinez-Barrera, G., Brostow, W. and Polat, H. (2013), "Fuzzy logic model for prediction of properties of fiber reinforced self-compacting concrete", Mater. Sci., 19(2), 203-215. https://doi.org/10.5755/j01.ms.19.2.4439.
  19. Gencel, O., del Coz Diaz, J.J., Sutcu, M., Kocyigit, F., Rabanal, F.P.A., Alonso-Martinez, M. and Barrera, G.M. (2021), "Thermal performance optimization of lightweight concrete/EPS layered composite building blocks", Int. J. Thermophys., 42(4), 52-69. https://doi.org/10.1007/s10765-021-02804-1.
  20. Gencel, O., Ozel, C., Koksal, F., Erdogmus, E., Martinez-Barrera, G. and Brostow, W. (2012), "Properties of concrete paving blocks made with waste marble", J. Clean. Prod., 21(1), 62-70. https://doi.org/10.1016/j.jclepro.2011.08.023.
  21. Greco, F., Leonetti, L. and Luciano, R. (2015), "A multiscale model for the numerical simulation of the anchor bolt pull-out test in lightweight aggregate concrete", Constr. Build. Mater., 95, 860-874. https://doi.org/10.1016/j.conbuildmat.2015.07.170.
  22. He, Z. and Xiao, Y. (2020), "Experimental study on axial pull-out behavior of steel rebars glued-in glubam", J. Mater. Civil Eng., 32(3), 34-51. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003080.
  23. Ibrahim, A.M., Fahmy, M.F. and Wu, Z. (2016), "3D finite element modeling of bond-controlled behavior of steel and basalt FRP-reinforced concrete square bridge columns under lateral loading", Compos. Struct., 143, 33-52. https://doi.org/10.1016/j.compstruct.2016.01.014.
  24. Ji, T. (2005), "Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2", Cement Concrete Res., 35(10), 1943-1947. https://doi.org/10.1016/j.cemconres.2005.07.004.
  25. Joshaghani, A., Balapour, M., Mashhadian, M. and Ozbakkaloglu, T. (2020), "Effects of nano-TiO2, nano-Al2O3, and nano-Fe2O3 on rheology, mechanical and durability properties of self-consolidating concrete (SCC): An experimental study", Constr. Build. Mater., 245, 26-37. https://doi.org/10.1016/j.conbuildmat.2020.118444.
  26. Kazim, T. (2014), "Bond strength of tension lap-splices in full scale self-compacting concrete beams", Turk. J. Eng. Environ. Sci., 32(6), 377-386.
  27. Khan, U., Al-Osta, M.A. and Ibrahim, A. (2017), "Modeling shear behavior of reinforced concrete beams strengthened with externally bonded CFRP sheets", Struct. Eng. Mech., 61(1), 125-142. https://doi.org/10.12989/sem.2017.61.1.125.
  28. Lepakshi, R. and Reddy, B.V. (2020), "Bond strength of rebars in cement stabilised rammed earth", Constr. Build. Mater., 255, 112-136. https://doi.org/10.1016/j.conbuildmat.2020.119405.
  29. Li, H., Xiao, H.G., Yuan, J. and Ou, J. (2004), "Microstructure of cement mortar with nano-particles", Compos. Part B: Eng., 35(2), 185-189. https://doi.org/10.1016/S1359-8368(03)00052-0.
  30. Li, Z., Deng, Z., Yang, H. and Wang, H. (2020), "Bond behavior between recycled aggregate concrete and deformed rebar after Freeze-thaw damage", Constr. Build. Mater., 250, 12-35. https://doi.org/10.1016/j.conbuildmat.2020.118805.
  31. Liu, R., Xiao, H., Geng, J., Du, J. and Liu, M. (2020), "Effect of nano-CaCO3 and nano-SiO2 on improving the properties of carbon fibre-reinforced concrete and their pore-structure models", Constr. Build. Mater., 244, 23-42. https://doi.org/10.1016/j.conbuildmat.2020.118297.
  32. Liu, X., Liu, Y., Wu, T. and Wei, H. (2020), "Bond-slip properties between lightweight aggregate concrete and rebar", Constr. Build. Mater., 255, 119-125. https://doi.org/10.1016/j.conbuildmat.2020.119355.
  33. Lotfy, A., Hossain, K.M. and Lachemi, M. (2014), "Application of statistical models in proportioning lightweight self-consolidating concrete with expanded clay aggregates", Constr. Build. Mater., 65, 450-469. https://doi.org/10.1016/j.conbuildmat.2014.05.027.
  34. Lu, Y., Liu, Z., Li, S. and Li, N. (2018), "Bond behavior of steel fibers reinforced self-stressing and self-compacting concrete filled steel tube columns", Constr. Build. Mater., 158, 894-909. https://doi.org/10.1016/j.conbuildmat.2017.10.085.
  35. MacGregor, J.G., Wight, J.K., Teng, S. and Irawan, P. (1997), Reinforced Concrete: Mechanics and Design, Prentice Hall Upper Saddle River, NJ.
  36. Michal, M. and Keuser, M. (2018), Bond Tests Under High Loading Rates. High Tech Concrete: Where Technology and Engineering Meet, Springer.
  37. Naaman, A.E., Namur, G.G., Alwan, J.M. and Najm, H.S. (1991), "Fiber pullout and bond slip. I: Analytical study", J. Struct. Eng., 117(9), 2769-2790. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:9(2769).
  38. Ozbakkaloglu, T., Fang, C. and Gholampour, A. (2017), "Influence of FRP anchor configuration on the behavior of FRP plates externally bonded on concrete members", Eng. Struct., 133, 133-150. https://doi.org/10.1016/j.engstruct.2016.12.005.
  39. Ozbolt, J., Orsanic, F. and Balabanic, G. (2014), "Modeling pullout resistance of corroded reinforcement in concrete: Coupled three-dimensional finite element model", Cement Concrete Compos., 46, 41-55. https://doi.org/10.1016/j.cemconcomp.2013.10.014.
  40. Pop, I., De Schutter, G., Desnerck, P. and Onet, T. (2013), "Bond between powder type self-compacting concrete and steel reinforcement", Constr. Build. Mater., 41, 824-833. https://doi.org/10.1016/j.conbuildmat.2012.12.029.
  41. Qing, Y., Zenan, Z., Deyu, K. and Rongshen, C. (2007), "Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume", Constr. Build. Mater., 21(3), 539-545. https://doi.org/10.1016/j.conbuildmat.2005.09.001.
  42. Rezaee, M. and Maleki, V.A. (2015), "An analytical solution for vibration analysis of carbon nanotube conveying viscose fluid embedded in visco-elastic medium", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 229(4), 644-650. https://doi.org/10.1177/0954406214538011.
  43. Shafeek, A.M., Khedr, M., El-Dek, S. and Shehata, N. (2020), "Influence of ZnO nanoparticle ratio and size on mechanical properties and whiteness of White Portland Cement", Appl. Nanosci., 10, 3603-3615. https://doi.org/10.1007/s13204-020-01444-5.
  44. Singh, L., Karade, S., Bhattacharyya, S., Yousuf, M. and Ahalawat, S. (2013), "Beneficial role of nanosilica in cement based materials-A review", Constr. Build. Mater., 47, 1069-1077. https://doi.org/10.1016/j.conbuildmat.2013.05.052.
  45. Solomos, G. and Berra, M. (2010), "Rebar pullout testing under dynamic Hopkinson bar induced impulsive loading", Mater. Struct., 43(1-2), 247-260. https://doi.org/10.1617/s11527-009-9485-z.
  46. Tang, C.W. (2017), "Uniaxial bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete", Struct. Eng. Mech., 62, 651-661. https://doi.org/10.12989/sem.2017.62.5.651.
  47. Thomas, C., De Brito, J., Cimentada, A. and Sainz-Aja, J. (2020), "Macro-and micro-properties of multi-recycled aggregate concrete", J. Clean. Prod., 245, 45-62. https://doi.org/10.1016/j.jclepro.2019.118843
  48. Trezos, K.G., Sfikas, I.P., Palmos, M.S. and Sotiropoulou, E.K. (2010), Top-Bar Effect in Self-Compacting Concrete Elements. Design, Production and Placement of Self-Consolidating Concrete, Springer.
  49. Uygunoglu, T., Brostow, W., Gencel, O. and Topcu, I.B. (2013), "Bond strength of polymer lightweight aggregate concrete", Polym. Ccompos., 34(12), 2125-2132. https://doi.org/10.1002/pc.22621.
  50. Vahidi Pashaki, P., Pouya, M. and Maleki, V.A. (2018), "Highspeed cryogenic machining of the carbon nanotube reinforced nanocomposites: Finite element analysis and simulation", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(11), 1927-1936. https://doi.org/10.1177/0954406217714012.
  51. Valcuende, M. and Parra, C. (2009), "Bond behaviour of reinforcement in self-compacting concretes", Constr. Build. Mater., 23(1), 162-170. https://doi.org/10.1016/j.conbuildmat.2008.01.007.
  52. Veljkovic, A., Carvelli, V., Haffke, M.M. and Pahn, M. (2017), "Concrete cover effect on the bond of GFRP bar and concrete under static loading", Compos. Part B: Eng., 124, 40-53. https://doi.org/10.1016/j.compositesb.2017.05.054.
  53. Wardeh, G., Ghorbel, E., Gomart, H. and Fiorio, B. (2017), "Experimental and analytical study of bond behavior between recycled aggregate concrete and steel bars using a pullout test", Struct. Concrete, 18(5), 811-825. https://doi.org/10.1002/suco.201600155.
  54. Yan, F., Lin, Z., Zhang, D., Gao, Z. and Li, M. (2017), "Experimental study on bond durability of glass fiber reinforced polymer bars in concrete exposed to harsh environmental agents: freeze-thaw cycles and alkaline-saline solution", Compos. Part B: Eng., 116, 406-421. https://doi.org/10.1016/j.compositesb.2016.10.083.
  55. Yoo, D.Y., Kang, S.T., Banthia, N. and Yoon, Y.S. (2017), "Nonlinear finite element analysis of ultra-high-performance fiber-reinforced concrete beams", Int. J. Damage Mech., 26(5), 735-757. https://doi.org/10.1177/1056789515612559.
  56. Zhang, J., Ma, G., Huang, Y., Aslani, F. and Nener, B. (2019), "Modelling uniaxial compressive strength of lightweight selfcompacting concrete using random forest regression", Constr. Build. Mater., 210, 713-719. https://doi.org/10.1016/j.conbuildmat.2019.03.189.
  57. Zhang, L., Peng, M., Chang, D. and Xu, Y. (2016), Dam Failure Mechanisms and Risk Assessment, John Wiley & Sons.
  58. Zhang, X., Ou, J. and Wu, Z. (2017), "Effect of circumferentially monuniform lateral tension on bond behavior between plain round bars and concrete: Analytical study", J. Struct. Eng., 143(12), 34-51. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001903.