DOI QR코드

DOI QR Code

네팔산 자트로파 오일로부터 바이오디젤 제조를 위한 불균일계 촉매 Scale-up 연구

Scale-up Study of Heterogeneous Catalysts for Biodiesel Production from Nepalese Jatropha Oil

  • 심민석 (공주대학교 화학공학부) ;
  • 이승희 (공주대학교 화학공학부) ;
  • 김영빈 (공주대학교 화학공학부) ;
  • 구희지 (공주대학교 화학공학부) ;
  • 우재규 (공주대학교 화학공학부) ;
  • ;
  • 전종기 (공주대학교 화학공학부)
  • Sim, Minseok (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Seunghee (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Youngbin (Department of Chemical Engineering, Kongju National University) ;
  • Ku, Huiji (Department of Chemical Engineering, Kongju National University) ;
  • Woo, Jaegyu (Department of Chemical Engineering, Kongju National University) ;
  • Joshi, Rajendra (Department of Chemical Science and Engineering, School of Engineering, Kathmandu University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
  • 투고 : 2021.05.18
  • 심사 : 2021.06.14
  • 발행 : 2021.06.30

초록

본 연구는 네팔산 자트로파 오일을 원료로 사용하여 바이오디젤을 제조하는 불균일 촉매를 사용하는 2-step 공정에 초점을 맞추었다. 첫 번째 단계로, 네팔산 자트로파 오일에 함유된 FFA의 에스테르화 반응에서 Amberlyst-15의 재사용 횟수가 FFA의 에스테르화 반응에 미치는 영향을 고찰하였다. 두 번째로, 돌로마이트 비드 촉매를 적용한 전이에스테르화 반응의 scale-up 가능성을 확인하고자 하였다. 네팔산 자트로파 씨앗 120 kg을 이용하여 30 L (27 kg)의 자트로파 오일을 얻었으며 씨앗으로부터의 오일 수득율은 약 25.0 wt%이다. 자트로파 오일의 산가와 FFA 함량은 각각 11.3 mgKOH g-1 및 5.65%로 측정되었다. 비드형태의 Amberlyst-15 촉매를 사용하여 자트로파 오일의 에스테르화 반응을 수행한 결과, 신규 Amberlyst-15 촉매를 사용한 경우 반응 생성물의 산가는 0.26 mgKOH g-1까지 낮출 수 있었다. Amberlyst-15 촉매의 재생을 거듭할수록 Amberlyst-15 촉매가 비활성화되어 에스테르화 반응 성능이 저하됨을 알 수 있다. 비활성화의 원인은 촉매가 부서짐과 동시에 불순물이 침적되기 때문인 것으로 판단된다. 자트로파 오일의 에스테르화 반응에 Amberlyst-15 촉매를 5회까지 반복하여 재사용할 수 있음을 알 수 있다. 두 번째 단계인 전이에스테르화 반응에는 돌로마이트 촉매를 비드 형태로 대량 제조하여 사용하였다. 돌로마이트 비드 촉매가 90 g 장착된 spinning catalyst basket 반응기에서 전처리된 자트로파 오일의 전이에스테르화 반응을 통해서 반응 시작 후 2 h 후에 바이오 디젤 89.1 wt%에 도달하였으며, 이는 동일한 조건에서 soybean oil 의 전이에스테르화 반응 실험 결과와 거의 유사하였다.

This study focused on a two-step process using heterogeneous catalysts to produce biodiesel using Nepalese jatropha oil as a raw material. As a first step, the effect of the repetitive regeneration number of Amberlyst-15 on the esterification reaction of FFA in jatropha oil was investigated. Second, the possibility of a transesterification reaction scale-up using a dolomite bead catalyst was tested. Using 120 kg of jatropha seeds from Nepal, 30 L (27 kg) of jatropha oil was obtained, and the jatropha oil yield from the seeds was about 25.0 wt%. The acid value and FFA content of jatropha oil were measured to be 11.3 mgKOH g-1 and 5.65%, respectively. As a result of the esterification reaction of jatropha oil using the Amberlyst-15 catalyst in the form of beads, the acid value of the reaction product could be lowered to 0.26 mgKOH g-1 when the fresh Amberlyst-15 catalyst was used. As the regeneration of the Amberlyst-15 catalyst is repeated, the catalyst has been deactivated, and the esterification reaction performance has deteriorated. The cause of the deactivation seems to be due to the catalyst being broken and impurities being deposited. It was confirmed that the Amberlyst-15 catalyst could be reused up to 5 times for the esterification reaction of jatropha oil. In the second step, the transesterification reaction, a dolomite catalyst, was mass-produced and used in the form of beads. By transesterifying the pretreated jatropha oil in a spinning catalyst basket reactor equipped with 90 g of dolomite bead catalyst, 89.1 wt% of biodiesel yield was obtained in 2 hours after the start of the reaction, which was similar to the transesterification of soybean oil under the same conditions.

키워드

과제정보

This research was supported by International Cooperation Program through the National Research Foundation of Korea (NRF-2019K1A3A9A01000010).

참고문헌

  1. Estevez, R., Aguado-Deblas, L. Bautista, F. M., Luna, D., Luna, C., Calero, J., Posadillo, A., and Romero, A. A., "Biodiesel at the Crossroads: A Critical Review," Catalysts, 9(12), 1033-1070 (2019). https://doi.org/10.3390/catal9121033
  2. Balat, M., and Balat, H., "A Critical Review of Bio-diesel as a Vehicular Fuel," Energy Convers. Manage., 49(10), 2727-2741 (2008). https://doi.org/10.1016/j.enconman.2008.03.016
  3. Thangaraj, B., Solomon, P. R., Muniyandi, B., Ranganathan, S., and Lin, L., "Catalysis in biodiesel production-a review," Clean Energy, 3(1), 2-23 (2019). https://doi.org/10.1093/ce/zky020
  4. ANR, R., Saleh, A. A., Islam, M. S., Hamdan, S., and Maleque, M. A., "Biodiesel Production from Crude Jatropha Oil using a Highly Active Heterogeneous Nanocatalyst by Optimizing Transesterification Reaction Parameters," Energy & Fuels, 30(1), 334-343 (2016). https://doi.org/10.1021/acs.energyfuels.5b01899
  5. Aigba, P. I., Anyadiegwu, F. C., and Ogoke, J. C., "Characterization of Jatropha Oil and its Biodiesel," Adv. Environ. Stud., 5(1), 376-381 (2021).
  6. Nizah, M. R., Taufiq-Yap, Y. H., Rashid, U., Teo, S. H., Nur, Z. S., and Islam, A., "Production of Biodiesel from Non-Edible Jatropha Curcas Oil Via Transesterification Using Bi2O3-La2O3 Catalyst," Energy Convers. Manag., 88, 1257-1262 (2014). https://doi.org/10.1016/j.enconman.2014.02.072
  7. Woo, J., Joshi, R., Park, Y.-K., and Jeon, J.-K., "Biodiesel Production from Jatropha Seeds with Bead-Type Heterogeneous Catalyst," Korean J. Chem. Eng., 38(4), 763-770 (2021). https://doi.org/10.1007/s11814-021-0759-7
  8. Lam, M. K., Lee, K. T., and Mohamed, A. R., "Homogeneous, Heterogeneous and Enzymatic Catalysis for Transesterification of High Free Fatty Acid Oil (waste cooking oil) to Biodiesel: A Review," Biotechnol. Adv., 28(4), 500-518 (2010). https://doi.org/10.1016/j.biotechadv.2010.03.002
  9. Agarwal, M., Chauhan, G., Chaurasia, S. P., and Singh, K., "Study of Catalytic Behavior of KOH as Homogeneous and Heterogeneous Catalyst for Biodiesel Production," J. Taiwan Inst. Chem. Eng., 43(1), 89-94 (2012). https://doi.org/10.1016/j.jtice.2011.06.003
  10. Bournay, L., Casanave, D., Delfort, B., Hillion, G., and Chodorge, J. A., "New Heterogeneous Process for Biodiesel Production : A Way to Improve the Quality and the Value of the Crude Glycerin Produced by Biodiesel Plants," Catal. Today., 106(1-4), 190-192 (2005). https://doi.org/10.1016/j.cattod.2005.07.181
  11. Colombo, K., Ender, L., and Barros, A. A. C., "The Study of Biodiesel Production Using CaO as a Heterogeneous Catalytic Reaction," Egypt. J. Pet., 26(2), 341-349 (2017). https://doi.org/10.1016/j.ejpe.2016.05.006
  12. Chai, M., Tu, Q., Lu, M., and Yang, Y. J., "Esterification Pretreatment of Free Fatty Acid in Biodiesel Production, from Laboratory to Industry," Fuel Process. Technol., 125, 106-113 (2014). https://doi.org/10.1016/j.fuproc.2014.03.025
  13. Faruque, M. O., Razzak, S. A., and Hossain, M. M., "Application of Heterogeneous Catalysts for Biodiesel Production from Microalgal Oil-A Review," Catalysts, 10(9), 1025-1049 (2020). https://doi.org/10.3390/catal10091025
  14. Rizwanul Fattah, I. M., Ong, H. C., Mahlia, T. M. I., Mofijur, M., Silitonga, A. S., Rahman, S. M. A., and Ahmad, A., "State of the Art of Catalysts for Biodiesel Production," Front. Energy Res., 8(101), 1-17 (2020). https://doi.org/10.3389/fenrg.2020.00001
  15. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K. S., "Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution", Pure Appl. Chem., 87(9-10), 1051-1069 (2015). https://doi.org/10.1515/pac-2014-1117
  16. Jasen, P., and Marchetti, J. M., "Kinetic Study of the Esterification of Free Fatty Acid and Ethanol in the Presence of Triglycerides Using Solid Resins as Catalyst", Int. J. Low-Carbon Technol., 7(4), 325-330(2012).