DOI QR코드

DOI QR Code

Effect of Hydrogen Dilution Ratio and Crystallinity of nc-Si:H Thin Film on Realizing High Mobility TFTs

고이동도 TFTs 구현에 nc-Si:H 박막의 수소 희석비와 결정성이 미치는 영향

  • Choi, Jiwon (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kim, Taeyong (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Pham, Duy phong (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Jo, Jaewoong (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Cui, Ziyang (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Xin, Dongxu (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • 최지원 (성균관대학교 전자전기컴퓨터공학과) ;
  • 김태용 (성균관대학교 전자전기컴퓨터공학과) ;
  • 팜뒤퐁 (성균관대학교 전자전기컴퓨터공학과) ;
  • 조재웅 (성균관대학교 전자전기컴퓨터공학과) ;
  • 최자양 (성균관대학교 전자전기컴퓨터공학과) ;
  • 신동욱 (성균관대학교 전자전기컴퓨터공학과) ;
  • 이준신 (성균관대학교 정보통신대학)
  • Received : 2021.05.03
  • Accepted : 2021.05.28
  • Published : 2021.07.01

Abstract

TFTs technologies with as high mobility as possible is essential for high-performance large displays. TFTs using nanocrystalline silicon thin films can achieve higher mobility. In this work, the change of the crystalline volume fraction at different hydrogen dilution ratios was investigated by depositing nc-Si:H thin films using PECVD. It was observed that increasing hydrogen dilution ratio increased not only the crystalline volume fraction but also the crystallite size. The thin films with a high crystalline volume fraction (55%) and a low defect density (1017 cm-3·eV-1) were used as top gate TFTs channel layer, leading to a high mobility (55 cm2/V·s). We suggest that TFTs of high mobility to meet the need of display industries can be benefited by the formation of thin film with high crystalline volume fraction as well as low defect density as a channel layer.

Keywords

Acknowledgement

이 논문은 산업통상자원부 '산업혁신인재성장지원사업'의 재원으로 한국산업기술진흥원(KIAT)의 지원을 받아 수행된 연구임(2021년 차세대 디스플레이 디스플레이 공정·장비·소재 전문인력 양성사업, 과제번호: P0012453).

References

  1. M. Hara, Thin Solid Films, 519, 3922 (2011). [DOI: https://doi.org/10.1016/j.tsf.2011.01.283]
  2. K. Y. Chan, A. Gordijn, H. Stiebig, and D. Knipp, Phys. Status Solidi C, 7, 1144 (2010). [DOI: https://doi.org/10.1002/pssc.200982816]
  3. M. H. Juang, Y. S. Peng, and B. J. Liu, Thin Solid Films, 519, 3902 (2011). [DOI: https://doi.org/10.1016/j.tsf.2011.01.265]
  4. K. Y. Chan, D. Knipp, A. Gordijn, and H. Stiebig, J. Non-Cryst. Solids, 354, 2505 (2008). [DOI: https://doi.org/10.1016/j.jnoncrysol.2007.09.035]
  5. Y. Wang, H. Liu, and W. Shen, Nanoscale Res. Lett., 13, 234 (2018). [DOI: https://doi.org/10.1186/s11671-018-2641-z]
  6. C. H. Lee, A. Sazonov, and A. Nathan, J. Non-Cryst. Solids, 352, 1732 (2006). [DOI: https://doi.org/10.1016/j.jnoncrysol.2005.11.149]
  7. G. Dushaq, A. Nayfeh, and M. Rasras, Superlattices Microstruct., 107, 172 (2017). [DOI: https://doi.org/10.1016/j.spmi.2017.03.052]
  8. V. Kanneboina, R. MadaKa, and P. Agarwal, Mater. Today Commun., 15, 18 (2018). [DOI: https://doi.org/10.1016/j.mtcomm.2018.02.023]
  9. N. K. Maaloul, M. Kraini, K. Khirouni, and H. Khemakhem, J. Electron. Mater., 48, 3881 (2019). [DOI: https://doi.org/10.1007/s11664-019-07143-4]
  10. S. B. Amor, H. Meddeb, R. Daik, A. B. Othman, S. B. Slama, W. Dimassi, and H. Ezzaouia, Appl. Surf. Sci., 360, 572 (2016). [DOI: https://doi.org/10.1016/j.apsusc.2015.10.207]
  11. Y. L. Hsieh, L. H. Kau, H. J. Huang, C. C. Lee, Y. K. Fuh, and T. T. Li, Coatings, 8, 238 (2018). [DOI: https://doi.org/10.3390/coatings8070238]
  12. A. Jadhavar, A. Pawbake, R. Waykar, V. Jadkar, R. Kulkarni, A. Bhorde, S. Rondiya, A. Funde, D. Patil, A. Date, H. Pathan, and S. Jadkar, Energy Procedia, 110, 45 (2017). [DOI: https://doi.org/10.1016/j.egypro.2017.03.104]
  13. A. M. Ali and H. Kobayashi, J. Non-Cryst. Solids, 385, 17 (2014). [DOI: https://doi.org/10.1016/j.jnoncrysol.2013.10.019]
  14. S. B. Amor, R. Bousbih, R. Ouertani, W. Dimassi, and H. Ezzaouia, Sol. Energy, 103, 12 (2014). [DOI: https://doi.org/10.1016/j.solener.2014.02.004]
  15. J. H. Shim, J. H. Kim, and N. H. Cho, Trans. Electr. Electron. Mater., 20, 85 (2019). [DOI: https://doi.org/10.1007/s42341-019-00104-y]
  16. C. H. Lee, A. Sazonov, and A. Nathan, Appl. Phys. Lett., 86, 222106 (2005). [DOI: https://doi.org/10.1063/1.1942641]
  17. A. Risteska, K. Y. Chan, A. Gordijn, H. Stiebig, and D. Knipp, J. Disp. Technol., 8, 27 (2012). [DOI: https://doi.org/10.1109/JDT.2011.2166055]
  18. M. R. Esmaeili-Rad, F. Li, A. Sazonov, and A. Nathan, J. Appl. Phys., 102, 064512 (2007). [DOI: https://doi.org/10.1063/1.2784008]
  19. C. H. Lee, D. Striakhilev, and A. Nathan, IEEE Trans. Electron Devices, 54, 45 (2007). [DOI: https://doi.org/10.1109/TED.2006.887220]
  20. K. Y. Chan, D. Knipp, A. Gordijn, and H. Stiebig, J. Appl. Phys., 104, 054506 (2008). [DOI: https://doi.org/10.1063/1.2973465]
  21. H. K. Malik, S. Juneja, and S. Kumar, J. Theor. Appl. Phys., 13, 107 (2019). [DOI: https://doi.org/10.1007/s40094-019-0325-4]
  22. C. H. Lee, W. S. Wong, A. Sazonov, and A. Nathan, Thin Solid Films, 597, 151 (2015). [DOI: https://doi.org/10.1016/j.tsf.2015.11.055]
  23. J. I. Son, H. J. Nam, and N. H. Cho, Int. J. Photoenergy, 2012, 1 (2012). [DOI: https://doi.org/10.1155/2012/643895]
  24. Y. Huang, J. Liu, J. Wang, D. Bao, and S. Huang, Surf. Eng. Appl. Electrochem., 55, 259 (2019). [DOI: https://doi.org/10.3103/S1068375519030098]