Acknowledgement
This work was supported by Institute for information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No. 2019-0-00708, Integrated Development Environment for Autonomic IoT Applications based on Neuromorphic Architecture).
References
- Y. David. (2017). Corporate governance and blockchains. Review of Finance, 21(1), 7-31. DOI : 10.1093/rof/rfw074
- S. S. Jeong. (2018). Fintech Market Recent Trends and Implications. Information Technology Promotion Center(Online). http://www.itfind.
- D. H. Park & D. J. Ryu. (2019). Information asymmetry in insurance market through blockchain technology: Focusing on the sharing of medical information and the prevention of insurance fraud. Journal of the korean securities society, 48(4), 417-447. DOI : 10.26845/KJFS.2019.08.48.4.417
- Y. H. Kim & K. J. Jang. (2021). Comparative analysis of predictive performance of ultrafine dust(PM2.5) based on deep learning algorithm, Convergence Society for SMB, 11(3), 7-13.
- Y. S. Jeong & J. I. Im. (2019). An Anomalous Intelligence(AI) detection Model Study of Telecommunications Finalcial Fraud Incidents, KIISC, 29(1), 149-164.
- K. D. Kim. (2017). The impact of blockchain technology on the insurance industry. KIRI Report (Focus), 425, 2-9.
- M. A. Lee. (2017). Health Insurance Fraud Detection Using Data Mining Techniques. Diss. Graduate School of Seoul National University, Seoul.
- X. Rui & D. Wunsch. (2005). Survey of clustering algorithms. IEEE Transactions on neural networks 16(3), 645-678. DOI : 10.1109/TNN.2005.845141
- C. Corinna & V. Vapnik. (1995). Support-vector networks. Machine learning, 20(3), 273-297. DOI : 10.1007/BF00994018
- P. Yi et al. (2006). Application of clustering methods to health insurance fraud detection. In 2006 International Conference on Service Systems and Service Management (Vol. 1, pp. 116-120). IEEE. DOI : 10.1109/ICSSSM.2006.320598
- P. Yi et al. (2007). Application of classification methods to individual disability income insurance fraud detection. In International Conference on Computational Science (pp. 852-858). Springer, Berlin, Heidelberg.
- Y. S. Ko & H. S. Choi. (2017). Application and the business paradigm Changes and How to use them. Korean Society of Science and Arts Convergence, 27, 13-29. https://doi.org/10.17548/ksaf.2017.01.27.13
- J. Y. Ko & S. J. Bae. (2019). A Study on the Detection Method of Blockchain Abnormalities Based on Oversampling Extraction. KIIE, 45(6), 539-546.
- K. J. Jang. (2017). A study on Innovative Financial Services of Business Models using Blockchain Technology. e-Business, 18(6), 113-130.
- J. H. Jin & K. J. Ko. (2018). Blockchain technology trends and direction of utilization of health and welfare information statistics. Health and Welfare Forum, 2018(4), 96-106.
- G. S. Jeong. (2017). Special Report: blockchain-based insurance service trends. Seongnam : TTA.
- A. R. Bologa et al. (2013). Big data and specific analysis methods for insurance fraud detection. Database Systems Journal, 4(4), 30-39.
- K. Nian et al. (2016). Auto insurance fraud detection using unsupervised spectral ranking for anomaly. The Journal of Finance and Data Science, 2(1), 58-75. DOI : 10.1016/j.jfds.2016.03.001
- J. Schiller. (2006). The impact of insurance fraud detection systems. Journal of Risk and Insurance 73(3), 421-438. DOI : 10.1111/j.1539-6975.2006.00182.x
- J. S. Choi & J. K. Park. (2017). A Study on Blockchain-based Decentralized Internet of Things Paltform. KIISC, 27(6), 5-14.
- D. Y. Lee et al. (2017). Key Blockchain Technologies and Trends at Home and abroad. Communications of the Korean Institute of Information Scientists and Engineers, 35(6), 22-28.
- Y. J. Shin. (2021). The Improvement Plan for Personal Information Protection for Artificial Intelligence (AI) Service in South Korea. Journal of Convergence for Information Technology, 11(3), 20-33. DOI : 10.22156/CS4SMB.2021.11.03.020
- Y. S. Jeong et al. (2019). A Blockchain-based IIoT Information Collection Model for Improving the Productivity of Small and Medium Businesses. Journal of Convergence for Information Technology, 9(12), 1-7. DOI : 10.22156/CS4SMB.2019.9.12.001
- X. Zheng, Y. Le, A. P. Chan, Y. Hu & Y. Li. (2016). Review of the application of social network analysis (SNA) in construction project management research. International journal of project management, 34(7), 1214-1225. DOI : 10.1016/j.ijproman.2016.06.005
- M. K. Nasution. (2016). Social network mining (SNM): A definition of relation between the resources and SNA. International Journal on Advanced Science, Engineering and Information Technology, 6(6), 975-981. https://doi.org/10.18517/ijaseit.6.6.1390
- J. Jianqiu et al. (2013). Min-max hash for jaccard similarity. In 2013 IEEE 13th International Conference on Data Mining (pp. 301-309). IEEE. DOI : 10.1109/ICDM.2013.119