Acknowledgement
This research was supported by Sangji University Research Fund, 2019.
References
- https://docs.openvinotoolkit.org/latest/omz_models_intel_semantic_segmentation_adas_0001_description_semantic_segmentation_adas_0001.html
- O. Ronneberger, P. Fischer & T. Brox. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.
- V. Badrinarayanan, A. Kendall & R. Cipolla. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12), 2481-2495. DOI : 10.1109/TPAMI.2016.2644615
- A. Kendall, V. Badrinarayanan & R. Cipolla. (2018). SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding. arXiv preprint arXiv:1511.02680
- H. Zhao, J. Shi, X. Qi, X. Wang & J. Jia. (2017). Pyramid scene parsing network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2881-2890).
- G. Lin, A. Milan, C. Shen & I. Reid. (2017). Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1925-1934).
- H. LI et al. (2018). Pyramid attention network for semantic segmentation. arXiv preprint arXiv:1805.10180.
- L. C. Chen, G. Papandreou, F. Schroff & H. Adam. (2017). Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587.
- L. C. Chen et al. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European conference on computer vision (ECCV) (pp. 801-818).
- M. Yang, K. Yu, C. Zhang, Z. Li & K. Yang. (2018). Denseaspp for semantic segmentation in street scenes. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3684-3692).
- C. Yu et al. (2018). Bisenet: Bilateral segmentation network for real-time semantic segmentation. In Proceedings of the European conference on computer vision (ECCV) (pp. 325-341).
- https://github.com/guptavasu1213/Yolo-Vehicle-Counter
- J. Redmon & A. Farhadi. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
- T. N. Doan & M. T. Truong. (2020, November). Real-time vehicle detection and counting based on YOLO and DeepSORT. In 2020 12th International Conference on Knowledge and Systems Engineering (KSE) (pp. 67-72). IEEE.. DOI : 10.1109/KSE50997.2020.9287483
- D. Bolya, C. Zhou, F. Xiao & Y. J. Lee. (2019). Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 9157-9166).
- Y. H. Lee & Y. Kim. (2020). Comparison of CNN and YOLO for Object Detection. Journal of the semiconductor & display technology, 19(1), 85-92.