Acknowledgement
This research was supported by the National Research Foundation of Korea (grant 2020R1F1A107000111).
References
- Acker HW. Tailed bacteriophages: The Order Caudovirales. Adv. Virus Res. 51: 135-201 (1999)
- Ainsworth S, Sadovskaya I, Vinogradov E, Courtin P, Guerardel Y, Mahony J, Grard T, Cambillau C, Chapot-Chartier MP, Sinderen DV. Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity. mBio 5: 1-11 (2014) https://doi.org/10.3391/mbi.2014.5.1.01
- Ali Y, Koberg S, Hessner S, Sun X, Rabe B, Back A, Neve H, Heller KJ. Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type. Front. Microbiol. 5: 98-98 (2014) https://doi.org/10.3389/fmicb.2014.00098
- Baptista C, Santos MA, Sao-Jose C. Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. J. Bacteriol. 190: 4989-4996 (2008) https://doi.org/10.1128/JB.00349-08
- Caso JL, Reyes-Gavilan CGDS, Herrero M, Montilla A, Rodriguez A, Suarez J. Isolation and characterization of temperate and virulent bacteriophages of Lactobacillus plantarum. J. Dairy Sci. 78: 741-750 (1995) https://doi.org/10.3168/jds.S0022-0302(95)76685-1
- Chang JY, Chang HC. Improvement in the quality and shelf life of kimchi by fermentation with the induced bacteriocin-producing strain, Leuconostoc citreum GJ7 as a starter. J. Food Sci. 75: M103-M110 (2010) https://doi.org/10.1111/j.1750-3841.2009.01486.x
- Chen X, Xi Y, Zhang H, Wang M, Fan Y, Wu W. Characterization and adsorption of Lactobacillus virulent phage P1. J. Dairy Sci. 99: 6995-7001 (2016) https://doi.org/10.3168/jds.2016-11332
- Cho JH, Lee SJ, Choi JJ, Chung CH. Chemical and sensory profiles of Dongchimi (Korean watery radish kimchi) liquids based on descriptive and chemical analyses. Food Sci. Biotechnol. 24: 497-506 (2015) https://doi.org/10.1007/s10068-015-0065-4
- da Silva Duarte V, Giaretta S, Campanaro S, Treu L, Armani A, Tarrah A, Oliveira de Paula S, Giacomini A, Corich V. A Cryptic non-inducible prophage confers phage-immunity on the Streptococcus thermophilus M17PTZA496. Viruses 11: 7 (2019) https://doi.org/10.3390/v11010007
- Han JS, Kang J. Retardation of Kimchi fermentation by addition of glucono-δ-lacton. J. Korean Soc Food Sci. Nutr. 33: 553-559 (2004) https://doi.org/10.3746/JKFN.2004.33.3.553
- Jonczyk E, Klak M, Miedzybrodzki R, Gorski A. The influence of external factors on bacteriophages-Review. Folia Microbiol. 56:191-200 (2011) https://doi.org/10.1007/s12223-011-0039-8
- Jung JY, Lee SH, Kim JM, Park MS, Bae JW, Hahn Y, Madsen EL, Jeon,CO. Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl. Environ. Microbiol. 77: 2264-2274 (2011) https://doi.org/10.1128/AEM.02157-10
- Jurczak-Kurek A, Gasior T, Nejman-Falenczyk B, Bloch S, Dydecka A, Topka G, Necel A, Jakubowska-Deredas M, Narajczyk M, Richert M. Mieszkoswska A, Wrobel B, Wegrzn G, Wegryn A. Biodiversity of bacteriophages: Morphological and biological properties of a large group of phages isolated from urban sewage. Sci. Rep. 6: 34338-34354 (2016) https://doi.org/10.1038/srep34338
- Kim HY, Bong YJ, Jeong JK, Lee S, Kim BY, Park KY. Heterofermentative lactic acid bacteria dominate in Korean commercial kimchi. Food Sci. Biotechnol. 25: 541-545 (2016) https://doi.org/10.1007/s10068-016-0075-x
- Kleppen HP, Holo H, Jeon SR, Nes IF, Yoon SS. Novel Podoviridae family bacteriophage infecting Weissella cibaria isolated from kimchi. Appl. Environ. Microbiol. 78: 7299-7308 (2012) https://doi.org/10.1128/AEM.00031-12
- Kong CS, Bak SS, Rhe SH, Park KY. Standardization of manufactured method and lactic acid bacteria growth and CO2 levels of Nabak kimchi at different fermentation temperatures. J. Korean Soc. Food Sci. Nutr. 34: 707-714 (2005) https://doi.org/10.3746/JKFN.2005.34.5.707
- Kong SJ. Weissella-Leuconostoc succession with bacteriophage during kimchi fermentation and bacteriophage characterization. MS thesis, Gachon University, Seongnam, Korea (2019)
- Kong SJ, Park JH. Acid tolerance and morphological characteristics of five Weissella cibaria bacteriophages isolated from kimchi. Food Sci. Biotechnol. 29: 873-8781 (2020) https://doi.org/10.1007/s10068-019-00723-4
- Kutter E. Phage host range and efficiency of plating. Vol. 1, pp 141-149. In: Bacteriophages Methods and Protocols. Clokie MRJ, Kropinski AM (eds). Humana Press, New York, USA. (2009)
- Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8: 317-327 (2010) https://doi.org/10.1038/nrmicro2315
- Lee K, Lee Y. Effect of Lactobacillus plantarum as a starter on the food quality and microbiota of kimchi. Food Sci. Biotecnol. 19: 641-646 (2010) https://doi.org/10.1007/s10068-010-0090-2
- Lee KH, Byun MW. Quality changes of kimchi manufactured with sanitized materials by ozone and gamma irradiation during storage. J. Korean Soc. Food Sci. Nutr. 36: 216-221 (2007) https://doi.org/10.3746/JKFN.2007.36.2.216
- Lee KH, Lee JH. Isolation of Leuconostoc and Weissella species inhibiting the growth of Lactobacillus sakei from Kimchi. Korean J. Microbiol. Biotechnol. 39: 175-181 (2011)
- Lim CR, Park HK, Han HU. Revaluation of isolation and identification of Gram-positive bacteria in kimchi. Kor. J. Microbiol. 27: 404-414 (1989)
- Lu Z, Breidt F, Plengvidhya V, Fleming HP. Bacteriophage ecology in commercial sauerkraut fermentations. Appl. Environ. Microbiol. 69: 3192-3202 (2003) https://doi.org/10.1128/AEM.69.6.3192-3202.2003
- Lu Z, Perez-Diaz IM, Hayes JC, Breidt F. Bacteriophage ecology in a commercial cucumber fermentation. Appl. Environ. Microbiol. 78: 8571-8578 (2012) https://doi.org/10.1128/AEM.01914-12
- Lunde M, Aastveit AH, Blatny JM, Nes IF. Effects of diverse environmental conditions on ΦLC3 prophage stability in Lactoccocus lactis. Appl. Environ. Microbiol. 71: 721-727 (2005) https://doi.org/10.1128/AEM.71.2.721-727.2005
- Mahony J, Cambillau C, van Sinderen D. Host recognition by lactic acid bacterial phages. FEMS Microbiol. Rev. 41: S16-S26 (2017) https://doi.org/10.1093/femsre/fux019
- Manohar P, Tamhankar AJ, Lundborg CS, Ramesh N. Isolation, characterization and in vivo efficacy of Escherichia phage myPSH1131. PLoS One 13: e0206278 (2018) https://doi.org/10.1371/journal.pone.0206278
- Marco MB, Garneau M, Tremblay JE, Quiberoni D, Moinneau A. Characterization of two virulent phages of Lactobacillus plantarum. Appl. Environ. Microbiol. 78: 8719-8734 (2012) https://doi.org/10.1128/AEM.02565-12
- Mheen TI, Kwon TW. Effect of temperature and salt concentration on kimchi fermentation. Korean. J. Food Sci. Technol. 16: 443- 450 (1984)
- Ortman AC, Suttle CA. Determination of virus abundance by epifluorescence microsopy. Vol. 1, pp87-95. In: Bacteriophages Methods and Protocols. Clokie MRJ, Kropinski AM (eds). Humana Press, New York, USA. (2009)
- Park EJ, Chun J, Cha CJ, Park WS, Jeon CO, Bae JW. Bacterial community analysis during fermentation of ten representative kinds of kimchi with barcoded pyrosequencing. Food Microbiol. 30: 197-204 (2012) https://doi.org/10.1016/j.fm.2011.10.011
- Park JG, Kim JH, Park JN, Kim YD, Kim WG, Lee JW, Hwang HJ, Byun MW. The effect of irradiation temperature on the quality improvement of Kimchi, Korean fermented vegetables, for its shelf stability. Radiat. Phys. Chem. 77: 497-502 (2008) https://doi.org/10.1016/j.radphyschem.2007.08.005
- Park WJ. Succession of lactic acid bacteria and bacteriophage during Dongchimi fermentation and bacteriophage characterization. MS thesis, Gachon University, Seongnam, Korea (2017)
- Pringsulaka O, Patarasinpaiboon N, Suwannasai N, Atthakor W, Rangsiruji A. Isolation and characterisation of a novel Podoviridae-phage infecting Weissella cibaria N 22 from Nham, a Thai fermented pork sausage. Food Microbiol. 28: 518-525 (2011) https://doi.org/10.1016/j.fm.2010.10.011
- Pujato SA, Guglielmotti DM, Martinez-Garcia M, Quiberoni A, Mojica FJM. Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides bacteriophages: Genomics and cross-species host ranges. Int. J. Food Microbiol. 257: 128-137 (2017) https://doi.org/10.1016/j.ijfoodmicro.2017.06.009
- Rattanachaikunsopon P, Phumkhachorn P. Bacteriophages ΦLPN014 infecting Lactobacillus plantarum N014, A potential starter culture for NHAM fermentation. Ann. Exp. Bio. 2: 1-7 (2014)
- Renata GK, Leuschner EKA, Hammes WP. Characterization of a virulent Lactobacillus sake phage PWH2. Appl. Microbiol. Biotechnol. 34: 255-260 (1993)
- Shon KH, Lee HJ. Effect of high pressure treatment on the quality and storage of kimchi. Int. Food Sci. Technol. 33: 359-365 (1998) https://doi.org/10.1046/j.1365-2621.1998.00138.x
- Sunthornthummas S, Doi K, Rangsiruji A, Sarawaneeyaruk S, Pringsulaka O. Isolation and characterization of Lactobacillus paracasei LPC and phage ΦT25 from fermented milk. Food Control 73: 1353-1361 (2017) https://doi.org/10.1016/j.foodcont.2016.10.052
- van Houte S, Buckling A, Westra ER. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. R. 80: 745-763 (2016) https://doi.org/10.1128/MMBR.00011-16
- Wang C, Cui Y, Qu X. Mechanisms and improvement of acid resistance in lactic acid bacteria. Arch. Microbiol. 200: 195-201 (2018) https://doi.org/10.1007/s00203-017-1446-2
- Wang L, Zhu Z, Qian H, Li Y, Chen Y, Ma P, Gu B. Comparative genome analysis of 15 clinical Shigella flexneri strains regarding virulence and antibiotic resistance. AIMS Microbiol. 5: 205-222 (2019) https://doi.org/10.3934/microbiol.2019.3.205
- Weitz JS, Poisot T, Meyer JR, Flores CO, Valverde S, Sullivan MB, Hochberg ME. Phage-bacteria infection networks. Trends Microbiol. 21: 82-91 (2013) https://doi.org/10.1016/j.tim.2012.11.003