DOI QR코드

DOI QR Code

Research on the dispersion of carbon nanotubes and their application in solution-processed polymeric matrix composites: A review

  • Feng, Tao (Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology) ;
  • Liu, Neng (Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology) ;
  • Wang, Shunjie (Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology) ;
  • Qin, Can (Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology) ;
  • Shi, Shengwei (Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology) ;
  • Zeng, Xueying (Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology) ;
  • Liu, Gang (Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology)
  • Received : 2020.09.16
  • Accepted : 2021.04.04
  • Published : 2021.06.25

Abstract

This review highlights and categorizes the approaches for preparation of CNTs dispersion and polymer/CNTs composites via solution-based strategies. Carbon nanotubes (CNTs) demonstrate unique physical and chemical properties, which allow several exciting potential applications in various fields including nanocomposites. Presently, the commercialized application of CNTs is still quite limited due to the formation of CNTs bundles, which significantly degrade the properties. Therefore, well dispersion of CNTs in nanocomposites is quite important, especially for CNTs/polymer composites, as a small amount of CNTs can improve the composite properties dramatically. This article will review the research on the dispersion of CNTs (including covalent and non-covalent functionalization) and the fabrication of CNTs/polymer composites through solution-based strategies by using the CNT dispersions. Moreover, the factors influencing the properties of CNTs/polymer composites will be discussed as well as the future outlook.

Keywords

Acknowledgement

This work was financially supported by National Natural Science Foundation of China (51703173) and Open Fund of the State Key Laboratory of Luminescent Materials and Devices (2019-skllmd-14).

References

  1. Allen, R., Pan, L., Fuller, G.G. and Bao, Z. (2014), "Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers", ACS Appl. Mater. Interf., 6(13), 9966-9974. https://doi.org/10.1021/am5019995.
  2. Antonucci, A., Kupis-Rozmyslowicz, J. and Boghossian, A.A. (2017), "Noncovalent protein and peptide functionalization of single-walled carbon nanotubes for biodelivery and optical sensing applications", ACS Appl. Mater. Interf., 9(13), 11321-11331. https://doi.org/10.1021/acsami.7b00810.
  3. Backes, C., Schmidt, C.D., Hauke, F., Bottcher, C. and Hirsch, A. (2009), "High Population of Individualized SWCNTs through the Adsorption of Water-Soluble Perylenes", J. Am. Chem. Soc., 131(6), 2172-2184. http://doi.org/10.1021/ja805660b.
  4. Backes, C., Schmidt, C.D., Hauke, F. and Hirsch, A. (2011), "Perylene-based nanotweezers: Enrichment of larger-diameter single-walled carbon nanotubes", Chem-Asian. J., 6(2), 438-444. http://doi.org/10.1002/asia.201000647.
  5. Bagchi, S., Harpale, A. and Chew, H.B. (2018), "Interfacial load transfer mechanisms in carbon nanotube-polymer nanocomposites", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2216), 20170705. http://doi.org/10.1098/rspa.2017.0705.
  6. Bai, Y., Zhang, R., Ye, X., Zhu, Z., Xie, H., Shen, B., Cai, D., Liu, B., Zhang, C., Jia, Z., Zhang, S., Li, X. and Wei, F. (2018), "Carbon nanotube bundles with tensile strength over 80 GPa", Nat. Nanotechnol., 13(7), 589-595. https://doi.org/10.1038/s41565-018-0141-z.
  7. Berber, S., Kwon, Y.K. and Tomanek, D. (2000), "Unusually high thermal conductivity of carbon nanotubes", Phys. Rev. Lett., 84(20), 4613-4616. https://doi.org/10.1103/PhysRevLett.84.4613.
  8. Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C. and Haddon, R.C. (1998), "Solution Properties of Single-Walled Carbon Nanotubes", Science, 282(5386), 95-98. https://doi.org/10.1126/science.282.5386.95.
  9. Chen, J., Yan, L., Song, W. and Xu, D. (2018), "Interfacial characteristics of carbon nanotube-polymer composites: a review", Compos. Part A-Appl. S., 114, 149-169. https://doi.org/10.1016/j.compositesa.2018.08.021.
  10. Chen, J. and Han, J. (2020), "Effect of hydroxylated carbon nanotubes on the thermal and electrical properties of derived epoxy composite materials", Results Phys., 18(2020), 103246. https://doi.org/10.1016/j.rinp.2020.103246.
  11. Dai, W., Wang, J., Gan, X., Wang, H., Su, X. and Chen, X. (2020), "A systematic investigation of dispersion concentration and particle size distribution of multi-wall carbon nanotubes in aqueous solutions of various dispersants", Colloid. Surface. A., 589, 124369. https://doi.org/10.1016/j.colsurfa.2019.124369.
  12. Das, A.K., Mukherjee, A., Baba, K., Hatada, R., Bhowmik, R. and Meikap, A.K. (2018), "Current-voltage hysteresis behavior of PVA-assisted functionalized single-walled carbon nanotube free-standing film", J. Phys. Chem. C, 122(51), 29094-29105. https://doi.org/10.1021/acs.jpcc.8b08875.
  13. De Volder, M.F.L., Tawfick, S.H., Baughman, R.H. and Hart, A.J. (2013), "Carbon nanotubes: Present and future commercial applications", Science, 339(6119), 535-539. https://doi.org/10.1126/science.1222453.
  14. Du, F.P., Ye, E.Z., Yang, W., Shen, T.H., Tang, C.Y., Xie, X.L., Zhou, X.P. and Law, W.C. (2015), "Electroactive shape memory polymer based on optimized multi-walled carbon nanotubes/polyvinyl alcohol nanocomposites", Compos. Part B-Eng., 68, 170-175. https://doi.org/10.1016/j.compositesb.2014.08.043.
  15. Faraguna, F., Potschke, P. and Pionteck, J. (2017), "Preparation of polystyrene nanocomposites with functionalized carbon nanotubes by melt and solution mixing: Investigation of dispersion, melt rheology, electrical and thermal properties", Polymer, 132, 325-341. https://doi.org/10.1016/j.polymer.2017.11.014.
  16. Georgakilas, V., Kordatos, K., Prato, M., Guldi, D.M., Holzinger, M. and Hirsch, A. (2002a), "Organic functionalization of carbon nanotubes", J. Am. Chem. Soc., 124(5), 760-761. http://doi.org/10.1021/ja016954m.
  17. Georgakilas, V., Tagmatarchis, N., Pantarotto, D., Bianco, A., Briand, J.P. and Prato, M. (2002b), "Amino acid functionalisation of water soluble carbon nanotubes", Chem. Commun., (24), 3050-3051. http://doi.org/10.1039/B209843A.
  18. Georgakilas, V., Bourlinos, A., Gournis, D., Tsoufis, T., Trapalis, C., Mateo-Alonso, A. and Prato, M. (2008), "Multipurpose organically modified carbon nanotubes: From functionalization to nanotube composites", J. Am. Chem. Soc., 130(27), 8733-8740. https://doi.org/10.1021/ja8002952.
  19. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B. and Schulte, K. (2004), "Carbon nanotube-reinforced epoxycomposites: enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64(15), 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002.
  20. Greenfeld, I. and Wagner, H.D. (2015), "Nanocomposite toughness, strength and stiffness: Role of filler geometry", Nanocomposites, 1(1), 3-17. https://doi.org/10.1179/2055033214Y.0000000002.
  21. Grossiord, N., Loos, J. and Koning, C.E. (2005), "Strategies for dispersing carbon nanotubes in highly viscous polymers", J. Mater. Chem., 15(24), 2349-2352. http://doi.org/10.1039/B501805F.
  22. Grossiord, N., Kivit, P.J.J., Loos, J., Meuldijk, J., Kyrylyuk, A.V., van der Schoot, P. and Koning, C.E. (2008), "On the influence of the processing conditions on the performance of electrically conductive carbon nanotube/polymer nanocomposites", Polymer, 49(12), 2866-2872. http://doi.org/10.1016/j.polymer.2008.04.033.
  23. Grossiord, N., Wouters, M.E.L., Miltner, H.E., Lu, K.B., Loos, J., Mele, B.V. and Koning, C.E. (2010), "Isotactic polypropylene/carbon nanotube composites prepared by latex technology: Electrical conductivity study", Eur. Polym. J., 46(9), 1833-1843. http://doi.org/10.1016/j.eurpolymj.2010.06.009.
  24. Gulotty, R., Castellino, M., Jagdale, P., Tagliaferro, A. and Balandin, A.A. (2013), "Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotubepolymer nanocomposites", ACS Nano, 7(6), 5114-5121. http://doi.org/10.1021/nn400726g.
  25. Gupta, M.L., Sydlik, S.A., Schnorr, J.M., Woo, D.J., Osswald, S., Swager, T.M. and Raghavan, D. (2013), "The effect of mixing methods on the dispersion of carbon nanotubes during the solvent-free processing of multiwalled carbon nanotube/epoxy composites", J. Polym. Sci. Pol. Phys., 51(6), 410-420. http://doi.org/10.1002/polb.23225.
  26. Hamon, M.A., Chen, J., Hu, H., Chen, Y., Itkis, M.E., Rao, A.M., Eklund, P.C. and Haddon, R.C. (1999), "Dissolution of singlewalled carbon nanotubes", Adv. Mater., 11(10), 834-840. http://doi.org/10.1002/(sici)1521-4095(199907)11:10<834::aid-adma834>3.0.co;2-r.
  27. Hazani, M., Naaman, R., Hennrich, F. and Kappes, M.M. (2003), "Confocal fluorescence imaging of DNA-functionalized carbon nanotubes", Nano Lett., 3(2), 153-155. https://doi.org/10.1021/nl025874t.
  28. He, P., Shimano, S., Salikolimi, K., Isoshima, T., Kakefuda, Y., Mori, T., Taguchi, Y., Ito, Y. and Kawamoto, M. (2019), "Noncovalent modification of single-walled carbon nanotubes using thermally cleavable polythiophenes for solution-processed thermoelectric films", ACS Appl. Mater. Interf., 11(4), 4211-4218. https://doi.org/10.1021/acsami.8b14820.
  29. Hirano, A., Maeda, Y., Akasaka, T. and Shiraki, K. (2009), "Synergistically enhanced dispersion of native protein-carbon nanotube conjugates by fluoroalcohols in aqueous solution", Chem-Eur. J., 15(38), 9905-9910. http://doi.org/10.1002/chem.200901053.
  30. Holzinger, M., Abraham, J., Whelan, P., Graupner, R., Ley, L., Hennrich, F., Kappes, M. and Hirsch, A. (2003), "Functionalization of single-walled carbon nanotubes with (R-) oxycarbonyl nitrenes", J. Am. Chem. Soc., 125(28), 8566-8580. https://doi.org/10.1021/ja029931w.
  31. Holzinger, M., Vostrowsky, O., Hirsch, A., Hennrich, F., Kappes, M., Weiss, R. and Jellen, F. (2001), "Sidewall functionalization of carbon nanotubes", Angew. Chem. Int. Edit., 40(21), 4002-4005. https://doi.org/10.1002/1521-3773(20011105)40:21<4002::aid-anie4002>3.0.co;2-8.
  32. Hou, J., Du, W., Meng, F., Zhao, C. and Du, X. (2018), "Effective dispersion of multi-walled carbon nanotubes in aqueous solution using an ionic-gemini dispersant", J. Colloid. Interf. Sci., 512, 750-757. https://doi.org/10.1016/j.jcis.2017.10.109.
  33. Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T. and Yodh, A.G. (2003), "High weight fraction surfactant solubilization of single-wall carbon nanotubes in water", Nano Lett., 3(2), 269-273. https://doi.org/10.1021/nl025924u.
  34. Jia, Z., Wang, Z., Xu, C., Liang, J., Wei, B., Wu, D. and Zhu, S. (1999), "Study on poly (methyl methacrylate)/carbon nanotube composites", Mater. Sci. Eng. A, 271(1), 395-400. https://doi.org/10.1016/S0921-5093(99)00263-4.
  35. Jin, L., Bower, C. and Zhou, O. (1998), "Alignment of carbon nanotubes in a polymer matrix by mechanical stretching", Appl. Phys. Lett., 73(9), 1197-1199. https://doi.org/10.1063/1.122125.
  36. Kalinina, I., Worsley, K., Lugo, C., Mandal, S., Bekyarova, E. and Haddon, R.C. (2011), "Synthesis, dispersion, and viscosity of poly (ethylene glycol)-functionalized water-soluble single-walled carbon nanotubes", Chem. Mater., 23(5), 1246-1253. http://doi.org/10.1021/cm103030s.
  37. Kam, N.W.S., Jessop, T.C., Wender, P.A. and Dai, H. (2004), "Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells", J. Am. Chem. Soc., 126(22), 6850-6851. https://doi.org/10.1021/ja0486059.
  38. Karousis, N., Ichihashi, T., Yudasaka, M., Iijima, S. and Tagmatarchis, N. (2011), "Microwave-assisted functionalization of carbon nanohorns via [2+1] nitrenes cycloaddition", Chem. Commun., 47(5), 1604-1606. http://doi.org/10.1039/C0CC03101A.
  39. Kim, D., Lee, T., Kwon, M., Paik, H.-j., Han, J.H., Kang, M., Choi, J., Hong, S. and Kim, Y.A. (2020), "Polymer wrappinginduced dispersion of single walled carbon nanotubes in ethylene glycol under mild sonication", Rsc Adv., 10, 26262-26267. http://dx.doi.org/10.1039/D0RA04061D.
  40. Kong, K.T.S., Mariatti, M., Rashid, A.A. and Busfield, J.J.C. (2012), "Effect of processing methods and functional groups on the properties of multi-walled carbon nanotube filled poly (dimethyl siloxane) composites", Polym. Bull., 69(8), 937-953. http://doi.org/10.1007/s00289-012-0777-z.
  41. Konnola, R. and Joseph, K. (2016), "Effect of side-wall functionalisation of multi-walled carbon nanotubes on the thermo-mechanical properties of epoxy composites", RSC Adv., 6(28), 23887-23899. http://doi.org/10.1039/C6RA00080K.
  42. Li, C., Lv, X., Dai, J., Cui, J. and Yan, Y. (2013), "Synthesis of water-soluble single-walled carbon nanotubes and its application in poly (vinyl alcohol) composites", Polym. Adv. Technol., 24(4), 376-382. https://doi.org /10.1002/pat.3091.
  43. Li, Y., Wei, H., Li, L., Wang, J., Qian, X., He, L., Wang, X., Ouyang, Q., Chen, Y., Zhang, Y. and Li, Y. (2018), "Highefficiency surfactant prepared from phenolic resin for multiwalled carbon nanotube aqueous suspension", J. Nanopart. Res., 20, 162. https://doi.org/10.1007/s11051-018-4264-9.
  44. Liang, L., Gao, C., Chen, G. and Guo, C.Y. (2016), "Large-area, stretchable, super flexible and mechanically stable thermoelectric films of polymer/carbon nanotube composites", J. Mater. Chem. C, 4(3), 526-532. http://doi.org/10.1039/C5TC03768A.
  45. Liang, L., Xie, W., Fang, S., He, F., Yin, B., Tlili, C., Wang, D., Qiu, S and Li, Q. (2017), "High-efficiency dispersion and sorting of single-walled carbon nanotubes via non-covalent interactions", J. Mater. Chem. C, 5(44), 11339-11368. http://doi.org/10.1039/C7TC04390B.
  46. Lin, Y., Zhou, B., Shiral Fernando, K.A., Liu, P., Allard, L.F. and Sun, Y.P. (2003), "Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer", Macromolecules, 36(19), 7199-7204. https://doi.org/10.1021/ma0348876.
  47. Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P. J., Lu, A. Iverson, T., Shelimov, K., Huffman, C.B., Rodriguez-Macias, F., Shon, Y.S., Lee, T.R., Colbert, D.T. and Smalley, R. E. (1998), "Fullerene pipes", Science, 280(5367), 1253-1256. http://doi.org/10.1126/science.280.5367.1253.
  48. Liu, G., Rahman, A.F.M.M., Chaunchaiyakul, S., Kimura, T., Kuwahara, Y. and Komatsu, N. (2013a), "Bis(tert-butylpyrene) Nanotweezers and Nanocalipers: Enhanced Extraction and Recognition Abilities for Single-Walled Carbon Nanotubes", Chem-Eur. J., 19(48), 16221-16230. http://doi.org/10.1002/chem.201302799.
  49. Liu, G., Wang, F., Chaunchaiyakul, S., Saito, Y., Bauri, A.K., Kimura, T., Kuwahara, Y. and Komatsu, N. (2013b), "Simultaneous discrimination of diameter, handedness, and metallicity of single-walled carbon nanotubes with chiral diporphyrin nanocalipers", J. Am. Chem. Soc., 135(12), 4805-4814. http://doi.org/10.1021/ja312519s.
  50. Liu, G., Saito, Y., Nishio-Hamane, D., Bauri, A.K., Flahaut, E., Kimura, T. and Komatsu, N. (2014), "Structural discrimination of double-walled carbon nanotubes by chiral diporphyrin nanocalipers", J. Mater. Chem. A, 2(44), 19067-19074. http://doi.org/10.1039/C4TA04407J.
  51. Liu, G., Miyake, Y. and Komatsu, N. (2017), "Nanocalipers as novel molecular scaffolds for carbon nanotubes", Org. Chem. Front., 4(5), 911-919. http://doi.org/10.1039/C7QO00158D.
  52. Liu, G., Liu, N., Lopez-Moreno, A., Zhao, P., Dai, W., Shi, S. and Komatsu, N. (2018), "Efficient production of single-walled carbon nanotube aqueous dispersion using hexahydroxy-triphenylene as a dispersant and stabilizer", Chem. Select, 3(22), 6081-6086. https:// doi.org/10.1002/slct.201800473.
  53. Liu, G., Liu, N., Zhao, P., Zeng, X., Shi, S., Qin, C., Wang, S. and Dai, W. (2019a), "Solid-phase debundling of single-walled carbon nanotubes for the "stock solid" delivery of concentrated nanotube dispersions", ACS Appl. Nano Mater., 2(3), 1720-1726. https://doi.org/10.1021/acsanm.9b00201.
  54. Liu, M., Younes, H., Hong, H. and Peterson, G.P. (2019b), "Polymer nanocomposites with improved mechanical and thermal properties by magnetically aligned carbon nanotubes", Polymer, 166, 81-87. https://doi.org/10.1016/j.polymer.2019.01.031.
  55. Luo, S.-X.L., Lin, C.-J., Ku, K.H., Yoshinaga, K. and Swager, T.M. (2020), "Pentiptycene polymer/single-walled carbon nanotube complexes: Applications in benzene, toluene, and o-xylene detection", ACS Nano, 14(6), 7297-7307. https://doi.org/10.1021/acsnano.0c02570.
  56. Ma, P.C., Kim, J.K. and Tang, B.Z. (2007), "Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites", Compos. Sci. Technol., 67(14), 2965-2972. https://doi.org/10.1016/j.compscitech.2007.05.006.
  57. Ma, P.C., Mo, S.Y., Tang, B.Z. and Kim, J.K. (2010), "Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites", Carbon, 48(6), 1824-1834. https://doi.org/10.1016/j.carbon.2010.01.028.
  58. Mallakpour, S. and Soltanian, S. (2016), "Surface functionalization of carbon nanotubes: Fabrication and applications", RSC Adv., 6(111), 109916-109935. http://doi.org/10.1039/C6RA24522F.
  59. Martone, A., Faiella, G., Antonucci, V., Giordano, M. and Zarrelli, M. (2011), "The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix", Compos. Sci. Technol., 71(8), 1117-1123. http://doi.org/10.1016/j.compscitech.2011.04.002.
  60. McGinnis, R.L., Reimund, K., Ren, J., Xia, L., Chowdhury, M.R., Sun, X., Abril, M., Moon, J.D., Merrick, M.M., Park, J., Stevens, K.A., McCutcheon, J.R. and Freeman, B.D. (2018), "Large-scale polymeric carbon nanotube membranes with sub-1.27-nm pores", Sci. Adv., 4(3), e1700938. http://doi.org/10.1126/sciadv.1700938.
  61. Menezes, B.R.C., Ferreira, F.V., Silva, B.C., Simonetti, E.A.N., Bastos, T.M., Cividanes, L.S. and Thim, G.P. (2018), "Effects of octadecylamine functionalization of carbon nanotubes on dispersion, polarity, and mechanical properties of CNT/HDPE nanocomposites", J. Mater. Sci., 53(20), 14311-14327. https://doi.org/10.1007/s10853-018-2627-3.
  62. Mirka, B., Fong, D., Rice, N.A., Melville, O.A., Adronov, A. and Lessard, B.H. (2019), "Polyfluorene-sorted semiconducting single-walled carbon nanotubes for applications in thin-film transistors", Chem. Mater., 31(8), 2863-2872. https://doi.org/10.1021/acs.chemmater.8b05357.
  63. Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Smalley, R.E., Schmidt, J. and Talmon, Y. (2003), "Individually suspended single-walled carbon nanotubes in various surfactants", Nano Lett., 3(10), 1379-1382. http://doi.org/10.1021/nl034524j.
  64. Moradi, M.A., Angoitia, K.L., Berkel, S.V., Gnanasekaran, K., Friedrich, H., Heuts, J.P.A., Schoot, P. and Herk, A.M. (2015), "Bimodal latex effect on spin-coated thin conductive polymer-single-walled carbon nanotube layers", Langmuir, 31(44), 11982-11988. https://doi.org/10.1021/acs.langmuir.5b02756.
  65. Mun, S.J., Jung, Y.M., Kim, J.C. and Chang, J.H. (2008), "Poly(ethylene terephthalate) nanocomposite fibers with functionalized multiwalled carbon nanotubes via in-situ polymerization", J. Appl. Polym. Sci., 109(1), 638-646. https://doi.org/10.1002/app.28164.
  66. Nakashima, N., Okuzono, S., Murakami, H., Nakai, T. and Yoshikawa, K. (2003), "DNA Dissolves Single-walled Carbon Nanotubes in Water", Chem. Lett., 32(5), 456-457. https://doi.org/10.1246/cl.2003.456.
  67. Nallabothula, H., Bhattacharjee, Y., Samantara, L. and Bose, S. (2019), "Processing-dediated different states of dispersion of multiwalled carbon nanotubes in PDMS nanocomposites influence EMI shielding performance", ACS Omega, 4(1), 1781-1790. https://doi.org/10.1021/acsomega.8b02920.
  68. Nayak, S., Bhattacharjee, S. and Singh, B.P. (2012), "Preparation of transparent and conducting carbon nanotube/Nhydroxymethyl acrylamide composite thin films by in situ polymerization", Carbon, 50(11), 4269-4276. https://doi.org/10.1016/j.carbon.2012.05.010.
  69. Nish, A., Hwang, J.Y., Doig, J. and Nicholas, R.J. (2007), "Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers", Nat. Nanotechnol., 2(10), 640-646. http://doi.org/10.1038/nnano.2007.290.
  70. Noor, M.M., Goswami, J. and Davis, V.A. (2020), "Comparison of attachment and antibacterial activity of covalent and noncovalent lysozyme-functionalized single-walled carbon nanotubes", ACS Omega, 5(5), 2254-2259. https://doi.org/10.1021/acsomega.9b03387.
  71. O'Connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Hauge, R.H. and Weisman, R.B. (2002), "Band gap fluorescence from individual single-walled carbon nanotubes", Science, 297(5581), 593-596. http://doi.org/10.1126/science.1072631.
  72. Pompeo, F. and Resasco, D.E. (2002), "Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine", Nano Lett., 2(4), 369-373. http://doi.org/10.1021/nl015680y.
  73. Prato, M., Kostarelos, K. and Bianco, A. (2008), "Functionalized carbon nanotubes in drug design and discovery", Accounts. Chem. Res., 41(1), 60-68. https://doi.org/10.1021/ar700089b.
  74. Premkumar, T., Mezzenga, R. and Geckeler, K.E. (2012), "Carbon nanotubes in the liquid phase: Addressing the issue of dispersion", Small, 8(9), 1299-1313. http://doi.org/10.1002/smll.201101786.
  75. Qu, S., Yao, Q., Wang, L., Hua, J. and Chen, L. (2018), "A novel hydrophilic pyridinium salt polymer/SWCNTs composite film for high thermoelectric performance", Polymer, 136, 149-156. https://doi.org/10.1016/j.polymer.2017.12.048.
  76. Rao, A.M., Richter, E., Bandow, S., Chase, B., Eklund, P.C., Williams, K.A., Fang, S., Subbaswamy, K.R., Menon, M., Thess, A., Smalley, R.E., Dresselhaus, G. and Dresselhaus, M.S. (1997), "Diameter-selective Raman scattering from vibrational modes in carbon nanotubes", Science, 275(5297), 187-191. https://doi.org/10.1126/science.275.5297.187.
  77. Rubio, N., Fabbro, C., Herrero, M.A., Hoz, A., Meneghetti, M., Fierro, J.L.G., Prato, M. and Vazquez, E. (2011), "Ball-milling modification of single-walled carbon nanotubes: Purification, cutting, and functionalization", Small, 7(5), 665-674. http://doi.org/10.1002/smll.201001917.
  78. Samori, C., Sainz, R., Menard-Moyon, C., Toma, F.M., Venturelli, E., Singh, P., Ballestri, M., Prato, M. and Bianco, A. (2010), "Potentiometric titration as a straightforward method to assess the number of functional groups on shortened carbon nanotubes", Carbon, 48(9), 2447-2454. https://doi.org/10.1016/j.carbon.2010.03.015.
  79. Schneider, S., Lefebvre, J., Diercks, N.J., Berger, F.J., Lapointe, F., Schleicher, J., Malenfant, P.R.L. and Zaumseil, J. (2020), "Phenanthroline additives for enhanced semiconducting carbon nanotube dispersion stability and transistor performance", ACS Appl. Nano Mater., 3(12), 12314-12324. https://doi.org/10.1021/acsanm.0c02813.
  80. Shaffer, M.S.P. and Windle, A.H. (1999), "Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites", Adv. Mater., 11(11), 937-941. https://doi.org/10.1002/(sici)1521-095(199908)11:11<937::aid-adma937>3.0.co;2-9.
  81. Shahlol, O.M.A., Isawi, H., El-Malky, M.G., Al-Aassar, A.E.-H.M. and EI zwai, A. (2020), "Performance evaluation of the different nano-enhanced polysulfone membranes via membrane distillation for produced water desalination in Sert Basin-Libya", Arab. J. Chem., 13(4), 5118-5136. https://doi.org/10.1016/j.arabjc.2020.02.011.
  82. Shamshoom, C., Fong, D., Li, K., Kardelis, V. and Adronov, A. (2018), "Pillar[5]arene-decorated single-walled carbon nanotubes", ACS Omega 3(10), 13935-13943. https://doi.org/10.1021/acsomega.8b02091.
  83. Song, P., Song, J. and Zhang, Y. (2020), "Stretchable conductor based on carbon nanotube/carbon black silicone rubber nanocomposites with highly mechanical, electrical properties and strain sensitivity", Compos. Part B-Eng., 191, 107979. https://doi.org/10.1016/j.compositesb.2020.107979.
  84. Song, S., Li, Q., Zhang, C., Liu, Z., Fan, X. and Zhang, Y. (2021), "Balanced strength-toughness, thermal conductivity and selfcleaning properties of PMMA composites enabled by terpolymer grafted carbon nanotube", Nanotechnology, 32(2021), 195709. http://dx.doi.org/10.1088/1361-6528/abe2ca.
  85. Singh, P., Campidelli, S., Giordani, S., Bonifazi, D., Bianco, A. and Prato, M. (2009), "Organic functionalisation and characterisation of single-walled carbon nanotubes", Chem. Soc. Rev., 38(8), 2214-2230. http://doi.org/10.1039/B518111A.
  86. Singh, I., Verma, A., Kaur, I., Bharadwaj, L.M., Bhatia, V., Jain, V.K., Bhatia, C.S., Bhatnagar, P.K. and Mathur, P.C. (2010), "The effect of length of single-walled carbon nanotubes (SWNTs) on electrical properties of conducting polymer-SWNT composites", J. Polym. Sci. Pol. Phys., 48(1), 89-95. https:// doi.org/10.1002/polb.21847.
  87. Sui, G., Liu, D., Liu, Y., Ji, W., Zhang, Q. and Fu, Q. (2019), "The dispersion of CNT in TPU matrix with different preparation methods: solution mixing vs melt mixing", Polymer, 182, 121838. https://doi.org/10.1016/j.polymer.2019.121838.
  88. Tonga, M., Wei, L. and Lahti, P.M. (2020), "Enhanced thermoelectric properties of PEDOT:PSS composites by functionalized single wall carbon nanotubes", Int. J. Energ. Res., 44(11), 9149-9156. https://orcid.org/10.1002/er.5535.
  89. Tsang, S.C., Chen, Y.K., Harris, P.J.F. and Green, M.L.H. (1994), "A simple chemical method of opening and filling carbon nanotubes", Nature, 372(6502), 159-162. https://doi.org/10.1038/372159a0.
  90. Wan, H., Delale, F. and Shen, L. (2005), "Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites", Mech. Res. Commun., 32(5), 481-489. https://doi.org/10.1016/j.mechrescom.2004.10.011.
  91. Wang, H., Yi, S., Pu, X. and Yu, C. (2015), "Simultaneously improving electrical conductivity and thermopower of polyaniline composites by utilizing carbon nanotubes as high mobility conduits", ACS Appl. Mater. Interf., 7(18), 9589-9597. https://doi.org/10.1021/acsami.5b01149.
  92. Wang, L., Pan, C., Chen, Z., Zhou, W., Gao, C. and Wang, L. (2018), "Enhanced thermoelectric performance of conjugated polymer/single-walled carbon nanotube composites with strong stacking", ACS Appl. Energ. Mater., 1(9), 5075-5082. https://doi.org/10.1021/acsaem.8b01126.
  93. Wenseleers, W., Vlasov, I.I., Goovaerts, E., Obraztsova, E.D., Lobach, A.S. and Bouwen, A. (2004), "Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles", Adv. Funct. Mater., 14(11), 1105-1112. http://doi.org/10.1002/adfm.200400130.
  94. Wojtera, K., Walczak, M., Pietrzak, L., Fraczyk, J., Szymanski, L. and Sobczyk-Guzenda, A. (2020), "Synthesis of functionalized carbon nanotubes for fluorescent biosensors", Nanotechnol. Rev., 9, 1237-1244. https://doi.org/10.1515/ntrev-2020-0096.
  95. Wu, T.M. and Chen, E.C. (2008), "Preparation and characterization of conductive carbon nanotube-polystyrene nanocomposites using latex technology", Compos. Sci. Technol., 68(10-11), 2254-2259. http://doi.org/10.1016/j.compscitech.2008.04.010.
  96. Xie, N., Jiao, Q.J., Zang, C.G., Wang, C.L. and Liu, Y.Y. (2010), "Study on dispersion and electrical property of multi-walled carbon nanotubes/low-density polyethylene nanocomposites", Mater. Design, 31(4), 1676-1683. http://doi.org/10.1016/j.matdes.2009.02.032.
  97. Xing, W., Yang, W., Yang, W., Hu, Q., Si, J., Lu, H., Yang, B., Song, L., Hu, Y. and Yuen, R.K.K. (2016), "Functionalized carbon nanotubes with phosphorus- and nitrogen-containing agents: Effective reinforcer for thermal, mechanical, and flame-retardant properties of polystyrene nanocomposites", ACS Appl. Mater. Interf., 8(39), 26266-26274. https://doi.org/10.1021/acsami.6b06864.
  98. Yao, Q., Chen, L., Zhang, W., Liufu, S. and Chen, X. (2010), "Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites", ACS Nano, 4(4), 2445-2451. https://doi.org/10.1021/nn1002562.
  99. Yazdani, H., Smith, B.E. and Hatami, K. (2016), "Multi-walled carbon nanotube-filled polyvinyl chloride composites: Influence of processing method on dispersion quality, electrical conductivity and mechanical properties", Compos. Part A-Appl. S., 82, 65-77. https://doi.org/10.1016/j.compositesa.2015.12.005.
  100. Yu, M.F., Files, B.S., Arepalli, S. and Ruoff, R.S. (2000a), "Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties", Phys. Rev. Lett., 84(24), 5552-5555. https://doi.org/10.1103/PhysRevLett.84.5552.
  101. Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F. and Ruoff, R.S. (2000b), "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load", Science, 287(5453), 637-640. https://doi.org/10.1126/science.287.5453.637.
  102. Yuan, W., Che, J. and Chan-Park, M.B. (2011), "A novel polyimide dispersing matrix for highly electrically conductive solution-cast carbon nanotube-based composite", Chem. Mater., 23(18), 4149-4157. https://doi.org/10.1021/cm200909x.
  103. Zhang, W., Picu, R.C. and Koratkar, N. (2008), "The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites", Nanotechnology, 19(28). http://doi.org/10.1088/0957-4484/19/28/285709.
  104. Zhang, R., Wen, Q., Qian, W., Su, D.S., Zhang, Q. and Wei, F. (2011), "Superstrong ultralong carbon nanotubes for mechanical energy storage", Adv. Mater., 23(30), 3387-3391. https://doi.org/10.1002/adma.201100344.
  105. Zhang, F., Feng, Y., Qin, M., Gao, L., Li, Z., Zhao, F., Zhang, Z., Lv, F. and Feng, W. (2019), "Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite", Adv. Funct. Mater., 29(25), 1901383. https://doi.org/10.1002/adfm.201901383.
  106. Zhao, B., Hu, H. and Haddon, R.C. (2004), "Synthesis and properties of a water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) graft copolymer", Adv. Funct. Mater., 14(1), 71-76. https://doi.org/10.1002/adfm.200304440.
  107. Zheng, M., Jagota, A., Semke, E.D., Diner, B.A., McLean, R.S., Lustig, S.R., Richardson, R.E. and Tassi, N.G. (2003), "DNAassisted dispersion and separation of carbon nanotubes", Nat. Mater., 2(5), 338-342. http://doi.org/10.1038/nmat877.
  108. Zhou, D., Zhang, Y., Zhu, J., Yu, J., Wang, Y. and Hu, Z. (2019), "Tailoring the architecture of aromatic polymers for highly efficient dispersion of carbon nanomaterials and their high-performance composites", Carbon, 148, 297-306. https://doi.org/10.1016/j.carbon.2019.03.089.
  109. Zhu, J., Kim, J., Peng, H., Margrave, J.L., Khabashesku, V.N. and Barrera, E.V. (2003), "Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization", Nano Lett., 3(8), 1107-1113. http://doi.org/10.1021/nl0342489.