DOI QR코드

DOI QR Code

Relationships of Chemical Elements and their Environmental Impacts in Groundwater, Soil, and Fodder Plants in Arid Land

  • Hamdan, Ali (Geology Department, Faculty of Science, Aswan University) ;
  • Khozyem, Hassan (Geology Department, Faculty of Science, Aswan University) ;
  • Elbadry, Eman (Geology Department, Faculty of Science, Aswan University)
  • 투고 : 2021.03.25
  • 심사 : 2021.05.27
  • 발행 : 2021.06.28

초록

The relationship of both heavy metals and major elements in soil, plants, and groundwater was studied in a hyper-arid area and depends completely on the groundwater to cover its all needs. The study reviles that 27.3% of the studied groundwater was strongly acidic and has very low pH values (

키워드

과제정보

The authors are grateful to both Prof. Dr. Abdel Aziz Tantawy, New Valley University and Prof. Dr. Ashraf Emam, Geology Department, Faculty of Science, Aswan University for their field assessment, and fretful discussions during caring out this work. Also, we acknowledge the stuff members of the environmental and studies Lab, Aswan University for their efforts, caring out the geochemical analyses.

참고문헌

  1. Alghobar, M.A. and Suresha, S. (2017) Evaluation of metal accumulation in soil and tomatoes irrigated with sewage water from Mysore city, Karnataka, India. Journal of the Saudi Society of Agricultural Sciences, v.16, p.49-59. doi: 10.1016/j.jssas.2015.02.002.
  2. Alghobar, M.A. and Suresha, S. (2017) Evaluation of metal accumulation in soil and tomatoes irrigated with sewage water from Mysore city, Karnataka, India. Journal of the Saudi Society of Agricultural Sciences, v.16, p.49-59. doi: 10.1016/j.jssas.2015.02.002.
  3. Barbeta, A. and Penuelas, J. (2017) Relative contribution of groundwater to plant transpiration estimated with stable isotopes. Scientific reports, v.7, p.1-10. doi: 10.1038/s41598-017-09643-x.
  4. BGS DPHE (2001) Arsenic contamination of groundwater in Bangladesh. In: Kinniburgh DG, Smedley PL (eds) Final report. British Geological Survey Report WC/00/19 Keyworth, UK, British Geological Survey, vol 2, p 215
  5. Carrier A C C (1965) Handbook of Air Conditioning System Design. McGraw-Hill Books, New York, 780p.
  6. Chaoua, S., Boussaa, S., El Gharmali, A. and Boumezzough, A. (2019) Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. Journal of the Saudi Society of Agricultural Sciences, v.18, p.429-436. doi: 10.1016/j.jssas.2018.02.003.
  7. Chauhan, G. and Chauhan, U.K. (2014) Human health risk assessment of heavy metals via dietary intake of vegetables grown in wastewater irrigated area of Rewa, India. International Journal of Scientific and Research Publications, v.4, p.1-9.
  8. Davis, S.N. and Dewiest, R.J.M. (1966) Hydrogeology, John Wiley & Sons, Inc., New York, pp 463.
  9. Defo, C., Yerima, B.P.K., Noumsi, I.M.K. and Bemmo, N. (2015) Assessment of heavy metals in soils and groundwater in an urban watershed of Yaounde (Cameroon-West Africa). Environmental monitoring and assessment, v.187, p.1-17. doi: 10.1007/s10661-015-4292-1.
  10. Dos Santos, E.C., de Mendonca Silva, J.C. and Duarte, H.A. (2016) Pyrite oxidation mechanism by oxygen in aqueous medium. The Journal of Physical Chemistry C, v.120, p.2760-2768. doi:10.1021/acs.jpcc.5b10949.
  11. Edstrom I (1998) Scale forming tendency of water. Proceedings, Adv. Eur. Geoth. Res., 2nd Symposium, Strasbourg, Germany, 428-443.
  12. El-Ramady, H., Abdalla, N., Kovacs, S., Domokos-Szabolcsy, E., Bakonyi, N., Fari, M. and Geilfus, C.M. (2020) Sustainable Biorefinery and Production of Alfalfa (Medicago sativa L.). Egyptian Journal of Botany, v.60, p.621-639. doi: 10.21608/ejbo.2020.37749.1532
  13. FAO (1985) Water quality for agriculture. Paper No. 21 (Rev. 1). UNESCO Publication. Rome.
  14. Gad, M., El Sheikh, A. and El Osta, M. (2011) Optimal management for groundwater of Nubian aquifer in El Dakhla depression, Western Desert, Egypt. International Journal of Water Resources and Environmental Engineering, v.3, p.393-409. doi: 10.5897/IJWREE11.103.
  15. Gibbs, R. (1970) Mechanisms Controlling World's Water Chemistry, Science, v.170, p.1088-1090. https://doi.org/10.1126/science.170.3962.1088
  16. Gribovszki, Z., Szilagyi, J. and Kalicz, P. (2010) Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation-A review. Journal of Hydrology, v.385, p.371-383. doi: 10.1016/j.jhydrol.2010.02.001.
  17. Hawkins, C. and Yu, L.-X. (2018) Recent progress in alfalfa (Medicago sativa L.) genomics and genomic selection. Crop Journal, v.6, p.565-575. doi: 10.1016/j.cj.2018.01.006.
  18. Heinl, M. and Thorweihe, M. (1993) Groundwater resources and management in SW Egypt, Catena supplement, v.26, p.99-121.
  19. Hem, J.D. (1985) Study and interpretation of the chemical characteristics of natural water (Vol. 2254). Department of the Interior, US Geological Survey.
  20. Hermina, M. (1990) The surroundings of Kharga, Dakhla and Farafra oases. In: Said R (ed), The geology of Egypt. Balkema, Rotterdam, pp. 259-292, http://doi.org/10.1201/9780203736678-14.
  21. Holmes, P.R. and Crundwell, F.K. (2000) The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study. Geochimica et Cosmochimica Acta, v.64, p.263-274. doi: 10.1016/S0016-7037(99)00296-3.
  22. Hu, H., Chen, Q., Yin, Z., Zhang, P. and Wang, G. (2004) Effect of grinding atmosphere on the leaching of mechanically activated pyrite and sphalerite. Hydrometallurgy, v.72, p.79-86. doi: 10.1016/S0304-386X(03)00127-0.
  23. Huang, F., Zhang, Y., Zhang, D. and Chen, X. (2019) Environmental groundwater depth for groundwater-dependent terrestrial ecosystems in arid/semiarid regions: A review. International journal of environmental research and public health, v.16, p.763. doi: 10.3390/ijerph16050763.
  24. IPCC (Intergovernmental Panel on Climate Change) (2005) Special report on carbon dioxide capture and storage, pp. 197, 208, 390. Cambridge, UK: Cambridge University Press.
  25. Kabata-Pendias, A. (2000) Trace Elements in Soils and Plants, 3rd ed., CRC Press, Inc., Boca Raton, Florida.
  26. Kumar, V., Thakur, R.K. and Kumar, P. (2019) Assessment of heavy metals uptake by cauliflower (Brassica oleracea var. botrytis) grown in integrated industrial effluent irrigated soils: A prediction modeling study. Scientia horticulturae, v.257, 108682. doi: 10.1016/j.scienta.2019.108682.
  27. Kumari, M. and Rai, S.C. (2020) Hydrogeochemical evaluation of groundwater quality for drinking and irrigation purposes using water quality index in semi arid region of India. Journal of the Geological Society of India, v.95, p.159-168. doi: 10.1007/s12594-020-1405-4.
  28. Lei, Y., Hannoufa, A. and Yu, P. (2017) The use of gene modification and advanced molecular structure analyses towards improving alfalfa forage. International Journal of Molecular Sciences, v.18, p.E298. doi: 10.3390/ijms18020298.
  29. Li, B., Wang, Y., Hill, R.L. and Li, Z. (2019) Effects of apple orchards converted from farmlands on soil water balance in the deep loess deposits based on HYDRUS-1D model. Agriculture, Ecosystems & Environment, v.285, 106645. doi: 10.1016/j.agee.2019.106645.
  30. Lovley, D.R. (1993) Anaerobes into heavy metal: dissimilatory metal reduction in anoxic environments. Trends in ecology & evolution, v.8, p.213-217. doi: 10.1016/0169-5347(93)90102-U.
  31. Lubczynski, M. (2009) The hydrogeological role of trees in water-limited environments. Hydrogeology Journal, v.17, p.247. doi: 10.1007/s10040-008-0357-3.
  32. Maihemuti, B., Simayi, Z., Alifujiang, Y., Aishan, T., Abliz, A. and Aierken, G. (2021) Development and evaluation of the soil water balance model in an inland arid delta oasis: Implications for sustainable groundwater resource management. Global Ecology and Conservation, v.25, e01408. doi: 10.1016/j.gecco.2020.e01408.
  33. Mayrhofer, C., Niessner, R. and Baumann, T. (2014) Hydrochemistry and hydrogen sulfide generating processes in the Malm aquifer, Bavarian Molasse Basin, Germany. Hydrogeology Journal, v.22, p.151-162. DOI 10.1007/s10040-013-1064-2.
  34. McKibben, M.A. and Barnes, H.L. (1986) Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures. Geochimica et Cosmochimica Acta, v.50, p.1509-1520. doi: 10.1016/0016-7037(86)90325-X.
  35. McLaughlin, M, Parker, D. and Clarke, J. (1999) Metals and micronutrients - Food safety issues. Field Crops Research, v.60, p.143-163. doi: 10.1016/S0378-4290(98)00137-3.
  36. Mitchell, M.J., Jensen, O.E., Cliffe, K.A. and Maroto-Valer, M.M. (2010) A model of carbon dioxide dissolution and mineral carbonation kinetics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, v.466, p.1265-1290. doi: 10.1098/rspa.2009.0349.
  37. Nicol, M.J. and Lazaro, I. (2002) The role of EH measurements in the interpretation of the kinetics and mechanisms of the oxidation and leaching of sulphide minerals. Hydrometallurgy, v.63, p.15-22. doi: 10.1016/S0304-386X(01)00206-7.
  38. Othman, A., Sulaiman, A. and Sulaiman, S.K. (2015) The study on the effectiveness of organic material in acid mine drainage treatment. Jurnal Teknologi, v.77, doi: 10.11113/jt.v77.5991 .
  39. Pallud, C. and Van Cappellen, P. (2006) Kinetics of microbial sulfate reduction in estuarine sediments. Geochimica et Cosmochimica Acta, v.70, p.1148-1162. doi: 10.1016/j.gca.2005.11.002.
  40. Qin, J., Niu, A., Liu, Y. and Lin, C. (2021) Arsenic in leafy vegetable plants grown on mine water-contaminated soils: Uptake, human health risk and remedial effects of biochar. Journal of Hazardous Materials, v.402, 123488. doi: 10.1016/j.jhazmat.2020.123488.
  41. Ren, D., Xu, X., Ramos, T. B., Huang, Q., Huo, Z. and Huang, G. (2017) Modeling and assessing the function and sustainability of natural patches in salt-affected agro-ecosystems: Application to tamarisk (Tamarix chinensis Lour.) in Hetao, upper Yellow River basin. Journal of Hydrology, v.552, p.490-504. doi: 10.1016/j.jhydrol.2017.04.054.
  42. Richard, A., Galle, S., Descloitres, M., Cohard, J.M., Vandervaere, J.P., Seguis, L. and Peugeot, C. (2013) Interplay of riparian forest and groundwater in the hillslope hydrology of Sudanian West Africa (northern Benin). Hydrology and Earth System Sciences, v.17, p.5079-5096. doi: 10.5194/hess-17-5079-2013.
  43. Said, R. (1990) Geomorphology. In: Said R (ed), The geology of Egypt. Balkema, Rotterdam, pp 9-25.
  44. Schoeller, H. (1967) Geochemistry of groundwater - an international guide for research and practice (Chap.15, pp.1-18). UNESCO.
  45. Sefelnasr, A. (2002) Hydrogeological studies on some areas on the new Valley governorate, Western Desert, Egypt. MSc thesis, Assiut University, Egypt.
  46. Shah, A., Niaz, A., Ullah, N., Rehman, A., Akhlaq, M., Zakir, M. and Suleman Khan, M. (2013) Comparative study of heavy metals in soil and selected medicinal plants. Journal of Chemistry, v.2013, 621265. doi: 10.1155/2013/621265.
  47. Shebl, M.A., Kamel, S.M., Abu Hashesh, T.A. and Osman, M.A. (2008) The impact of leafcutting bees (Megachile minutissima, Megachilidae, Hymenoptera) (Radoszkowski, 1876) artificial nest sites on seed production of alfalfa, Ismailia, Egypt. Agriculture Journal, v.5, p.33-35.
  48. Shomar, B. (2015) Geochemistry of soil and groundwater in arid regions: Qatar as a case study. Groundwater for Sustainable Development, v.1, p.33-40. doi: 10.1016/j.gsd.2015.12.005.
  49. U.S. Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils. USDA Handbook 60, U.S. Government Printing Office, Washington, D. C.
  50. US EPA (2003) Environmental Protection Agency: National primary and secondary drinking water standard. Office of Water (4606M) (Vol. 16). EPA 816-F-03-016.
  51. US EPA (2004) EPA-822R04005. Drinking water standards and health advisories. National Primary Drinking Water Standards. United States Environmental Protection Agency. Washington, D.C., EUA, 20 pp. http://water.epa.gov/drink/standardsriskmanagement.cfm.
  52. US. Soil Survey Manual (2018) U.S. Department of Agriculture Handbook No. 18, the Soil Survey Manual, previously issued October 1962 and October 1993, 693p.
  53. USDHHS (2007) Toxicological profile for lead. Altanta: United States Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, p. 582.
  54. WHO (World Health Organization) (2011) Guidelines for drinking-water quality (4th ed.). World Health Organization.
  55. Wilcox, L. (1955) Classification of Irrigation Waters. U.S. Dept. Agric. Circular 969, Washinton, U. S. Dept. Agric.
  56. Wycisk, P. (1994) Correlation of the major late Jurassic-early Tertiary low-and high stand cycles of south-west Egypt and north-west Sudan. Geologische Rundschau, v.83, p.759-772. doi: 10.1007/BF00251074.
  57. Yin, L., Zhou, Y., Huang, J., Wenninger, J., Zhang, E., Hou, G. and Dong, J. (2015) Interaction between groundwater and trees in an arid site: Potential impacts of climate variation and groundwater abstraction on trees. Journal of Hydrology, v.528, p.435-448. doi: 10.1016/j.jhydrol.2015.06.063.
  58. Zeng, Y., Zhao, C., Shi, F., Schneider, M., Lv, G. and Li, Y. (2020) Impact of groundwater depth and soil salinity on riparian plant diversity and distribution in an arid area of china. Scientific reports, v.10, p.1-10. doi: 10.1038/s41598-020-64045-w.
  59. Zhang, F., Kang, J., Long, R., Yu, L.X., Wang, Z., Zhao, Z., Zhang, T. and Yang, Q. (2019) High-density linkage map construction and mapping QTL for yield and yield components in autotetraploid alfalfa using RAD-seq. BMC Plant Biology, v.19, 165. doi: 10.1186/s12870-019-1770-6
  60. Zhang, X., Guan, T., Zhou, J., Cai, W., Gao, N., Du, H., Jiang, L., Lai, L. and Zheng, Y. (2018) Groundwater depth and soil properties are associated with variation in vegetation of a desert riparian ecosystem in an arid area of China. Forests, v.9, p.34. doi: 10.3390/f9010034.