과제정보
The authors gratefully acknowledge support of Civil Engineering Department, Technical Division, Konoike Construction Japan for providing field data and sharing experience on tunnel construction.
참고문헌
- Basu, J.K., Bhattacharyya, D. and Kim, T. (2010), "Use of artificial neural network in pattern recognition", Int. J. Software Eng. Appl., 4(2).
- Ben Ali, J., Fnaiech, N., Saidi, L., Chebel-Morello, B. and Fnaiech, F. (2015), "Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals", Appl. Acoust., 89, 16-27. https://doi.org/10.1016/j.apacoust.2014.08.016.
- Bizjak, K.F. and Petkovsek, B. (2004), "Displacement analysis of tunnel support in soft rock around a shallow highway tunnel at Golovec", Eng. Geol., 75(1), 89-106. https://doi.org/10.1016/j.enggeo.2004.05.003.
- Dahlin, T., Bjelm, L. and Svensson, C. (1999), "Use of electrical imaging in site investigations for a railway tunnel through the Hallandsas Horst, Sweden", Q. J. Eng. Geol. Hydrogeol., 32(2), 163-172. https://doi.org/10.1144/GSL.QJEG.1999.032.P2.06.
- Dreyfus, G. (2005), Neural Networks: Methodology and Applications, Springer Science & Business Media,
- El-Naqa, A. (2001), "Application of RMR and Q geomechanical classification systems along the proposed Mujib Tunnel route, central Jordan", B. Eng. Geol. Environ., 60(4), 257-269. https://doi.org/10.1007/s100640100112.
- Elyasi, A., Javadi, M., Moradi, T., Moharrami, J., Parnian, S. and Amrac, M. (2016), "Numerical modeling of an umbrella arch as a pre-support system in difficult geological conditions: A case study", B. Eng. Geol. Environ., 75(1), 211-221. https://doi.org/10.1007/s10064-015-0738-5.
- Friant, J.E., Bauer, R.A., Gross, D.L., May, M. and Lach, J. (1997), "Pipetron tunnel construction issues", Fermi National Accelerator Lab.(FNAL), Batavia, Illinois, U.S.A.
- Galende-Hernandez, M., Menendez, M., Fuente, M.J. and Sainz-Palmero, G.I. (2018), "Monitor-while-drilling-based estimation of rock mass rating with computational intelligence: The case of tunnel excavation front", Autom. Constr., 93, 325-338. https://doi.org/10.1016/j.autcon.2018.05.019.
- Garcia-Pedrajas, N., Hervas-Martinez, C. and Ortiz-Boyer, D. (2005), "Cooperative coevolution of artificial neural network ensembles for pattern classification", IEEE T. Evol. Comput., 9(3), 271-302. https://doi.org/10.1109/TEVC.2005.844158.
- Garson, G.D. (1998), Neural Networks: An Introductory Guide for Social Scientists, Sage, London, U.K.
- Ghorbani, A., Hasanzadehshooiili, H. and Sadowski, L. (2018), "Neural prediction of tunnels' support pressure in elasto-plastic, strain-softening rock mass", Appl. Sci., 8(5), 841. https://doi.org/10.3390/app8050841.
- Ghosh, R., Schunnesson, H. and Kumar, U. (2015), "The use of specific energy in rotary drilling: The effect of operational parameters", Proceedings of the 37th International Symposium on the Application of Computers and Operations Research in the Mineral Industry, Fairbanks, Alaska, U.S.A., May.
- Gong, Q., Yin, L. and She, Q. (2013), "TBM tunneling in marble rock masses with high in situ stress and large groundwater inflow: A case study in China", B. Eng. Geol. Environ., 72(2), 163-172. https://doi.org/10.1007/s10064-013-0460-0.
- Guan, Z., Jiang, Y. and Tanabashi, Y. (2009), "Rheological parameter estimation for the prediction of long-term deformations in conventional tunnelling", Tunn. Undergr. Sp. Tech., 24(3), 250-259. https://doi.org/10.1016/j.tust.2008.08.001.
- Hecht-Nielsen, R. (1987), "Kolmogorov's mapping neural network existence theorem", Proceedings of the International Conference on Neural Networks, Alexandria, Virginia, U.S.A., October.
- Hsu, K.L., Gupta, H.V. and Sorooshian, S. (1995), "Artificial neural network modeling of the rainfall-runoff process", Water Resour. Res., 31(10), 2517-2530. https://doi.org/10.1029/95WR01955.
- Humstad, T., Hoien, A.H., Kveen, A. and Hoel, J.E. (2012), "Complete software overview of rock mass and support in Norwegian road tunnels", Proceedings of the ISRM International Symposium - EUROCK 2012, Stockholm, Sweden, May.
- Hush, D.R. (1989), "Classification with neural networks: A performance analysis", Proceedings of the IEEE International Conference on Systems Engineering, Fairborn, Ohio, U.S.A., August.
- Hussain, S., Mohammad, N., Khan, M., Rehman, Z.U. and Tahir, M. (2016), "Comparative analysis of rock mass rating prediction using different inductive modeling techniques", Int. J. Min. Eng. Miner. Process., 5(1), 9-15. https://doi.org/10.5923/j.mining.20160501.02.
- Kanellopoulos, I. and Wilkinson, G.G. (1997), "Strategies and best practice for neural network image classification", Int. J. Remote Sens., 18(4), 711-725. https://doi.org/10.1080/014311697218719.
- Kaya, A., Bulut, F. and Sayin, A. (2011), "Analysis of support requirements for a tunnel portal in weak rock: A case study from Turkey", Sci. Res. Essays, 6(31), 6566-6583. https://doi.org/10.5897/SRE11.1691.
- Kim, C.Y., Bae, G.J., Hong, S.W., Park, C.H., Moon, H.K. and Shin, H.S. (2001), "Neural network based prediction of ground surface settlements due to tunnelling", Comput. Geotech., 28(6), 517-547. https://doi.org/10.1016/S0266-352X(01)00011-8.
- Kontogianni, V., Tzortzis, A. and Stiros, S. (2004), "Deformation and failure of the Tymfristos tunnel, Greece", J. Geotech. Geoenviron. Eng., 130(10), 1004-1013. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1004).
- Koopialipoor, M., Ghaleini, E.N., Tootoonchi, H., Jahed Armaghani, D., Haghighi, M. and Hedayat, A. (2019), "Developing a new intelligent technique to predict overbreak in tunnels using an artificial bee colony-based ANN", Environ. Earth Sci., 78(5), 165. https://doi.org/10.1007/s12665-019-8163-x.
- Kumar, R., Kumaraswamidhas, L.A., Murthy, V.M.S.R. and Vettivel, S.C. (2019), "Experimental investigations on machine vibration in blast-hole drills and optimization of operating parameters", Measurement, 145, 803-819. https://doi.org/10.1016/j.measurement.2019.05.069.
- Kun, M. and Onargan, T. (2013), "Influence of the fault zone in shallow tunneling: A case study of Izmir Metro Tunnel", Tunn. Undergr. Sp. Tech., 33, 34-45. https://doi.org/10.1016/j.tust.2012.06.016.
- Kwon, S. and Lee, C. (2018)," "HM analysis for an in situ experiment using FLAC3D-TOUGH2 and an artificial neural network", Geomech. Eng., 16(4), 363-373. http://doi.org/10.12989/gae.2018.16.4.363.
- Leu, S.S.,Chen, C.N. and Chang, S.L. (2001), "Data mining for tunnel support stability: Neural network approach", Autom. Constr., 10(4), 429-441. https://doi.org/10.1016/S0926-5805(00)00078-9.
- Li, L., Li, S., Zhao, Y., Wang, H., Liu, Q., Yuan, X., Zhao, Y. and Zhang, Q. (2012), "Spatial deformation mechanism and load release evolution law of surrounding rock during construction of super-large section tunnel with soft broken surrounding rock masses", Chin. J. Rock Mech. Eng., 10, 2109-2118.
- Linden, P. (2005), "Val av borrklass kopplat till MWD, bergklass samt vattenflode vid projektet Hallandsas".
- Liu, J., Sakaguchi, O., Ishizu, S., Luan, H., Han, W. and Jiang, Y. (2020), "Application of specific energy in evaluation of geological conditions ahead of tunnel face", Energies, 13(4), 909. https://doi.org/10.3390/en13040909.
- Lo, S.C.B., Chan, H.P., Lin, J.S., Li, H., Freedman, M.T. and Mun, S.K. (1995), "Artificial convolution neural network for medical image pattern recognition", Neural Networks, 8(7-8), 1201-1214. https://doi.org/10.1016/0893-6080(95)00061-5.
- Mahdevari, S. and Torabi, S.R. (2012), "Prediction of tunnel convergence using artificial neural networks", Tunn. Undergr. Sp. Tech., 28, 218-228. https://doi.org/10.1016/j.tust.2011.11.002.
- Mahdevari, S., Torabi, S.R. and Monjezi, M. (2012), "Application of artificial intelligence algorithms in predicting tunnel convergence to avoid TBM jamming phenomenon", Int. J. Rock Mech. Min. Sci., 55, 33-44. https://doi.org/10.1016/j.ijrmms.2012.06.005.
- McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", B. Math. Biophys., 5(4), 115-133. https://doi.org/10.1007/BF02478259.
- Mikaeil, R., Haghshenas, S.S., Shirvand, Y., Hasanluy, M.V. and Roshanaei, V. (2016), "Risk assessment of geological hazards in a tunneling project using harmony search algorithm (case study: Ardabil-Mianeh railway tunnel)", Civ. Eng. J., 2(10), 546-554. https://doi.org/10.28991/cej-2016-00000057.
- Miura, K. (2003), "Design and construction of mountain tunnels in Japan", Tunn. Undergr. Sp. Tech., 18(2), 115-126. https://doi.org/10.1016/S0886-7798(03)00038-5.
- Navarro, J., Sanchidrian, J.A., Segarra, P., Castedo, R., Paredes, C. and Lopez, L.M. (2018), "On the mutual relations of drill monitoring variables and the drill control system in tunneling operations", Tunn. Undergr. Sp. Tech., 72, 294-304. https://doi.org/10.1016/j.tust.2017.10.011.
- Nikafshan Rad, H., Jalali, Z. and Jalalifar, H. (2015), "Prediction of rock mass rating system based on continuous functions using Chaos-ANFIS model", Int. J. Rock Mech. Min. Sci., 73, 1-9. https://doi.org/10.1016/j.ijrmms.2014.10.004.
- Nilsen, B. (2015), "Main challenges for deep subsea tunnels based on norwegian experience", J. Kor. Tunn. Undergr. Sp. Assoc., 17(5), 563-573. https://doi.org/10.9711/KTAJ.2015.17.5.563.
- Ocak, I. and Seker, S.E. (2013), "Calculation of surface settlements caused by EPBM tunneling using artificial neural network, SVM, and Gaussian processes", Environ. Earth Sci., 70(3), 1263-1276. https://doi.org/10.1007/s12665-012-2214-x.
- Paola, J. (1994), "Neural network classification of multispectral imagery", M.Sc. Thesis, The University of Arizona, Tucson, Arizona, U.S.A.
- Park, J., Lee, K.H., Kim, B.K., Choi, H. and Lee, I.M. (2017), |Predicting anomalous zone ahead of tunnel face utilizing electrical resistivity: II. Field tests", , Tunn. Undergr. Sp. Tech., 68, 1-10. https://doi.org/10.1016/j.tust.2017.05.017.
- Qiu, D., Li, S., Xu, Y., Tian, H. and Yan, M. (2014), "Advanced prediction of surrounding rock classification based on digital drilling technology and QGA-RBF neural network", Rock Soil Mech., (7), 2013-2018.
- Rafiq, M.Y., Bugmann, G. and Easterbrook, D.J. (2001), "Neural network design for engineering applications", Comput. Struct., 79(17), 1541-1552. https://doi.org/10.1016/S0045-7949(01)00039-6.
- Ripley, B.D. (1993), "Statistical aspects of neural networks", Networks Chaos Stat. Probab. Aspects, 50, 40-123. https://doi.org/10.1007/978-1-4899-3099-6_2
- Schunnesson, H. (1997), "Drill process monitoring in percussive drilling for location of structural features, lithological boundaries and rock properties, and for drill productivity evaluation", Ph.D. Dissertation, Lulea University of Technology, Lulea, Sweden.
- Schunnesson, H. (1998), "Rock characterisation using percussive drilling", Int. J. Rock Mech. Min. Sci., 35(6), 711-725. https://doi.org/10.1016/S0148-9062(97)00332-X.
- Schunnesson, H. (1996), "RQD predictions based on drill performance parameters", Tunn. Undergr. Sp. Tech., 11(3), 345-351. https://doi.org/10.1016/0886-7798(96)00024-7.
- Schunnesson, H., Elsrud, R. and Rai, P. (2011), "Drill monitoring for ground characterization in tunnelling operations", Proceedings of the International Symposium on Mine Planning and Equipment Selection, Almaty, Kazakhstan, October.
- Segui, J. and Higgins, M. (2002), "Blast design using measurement while drilling parameters", Fragblast, 6(3-4), 287-299. https://doi.org/10.1076/frag.6.3.287.14052.
- Singh, B., Jethwa, J., Dube, A. and Singh, B. (1992), "Correlation between observed support pressure and rock mass quality", Tunn. Undergr. Sp. Tech., 7(1), 59-74. https://doi.org/10.1016/0886-7798(92)90114-W.
- Soupios, P., Loupasakis, C. and Vallianatos, F. (2008), "Reconstructing former urban environments by combining geophysical electrical methods and geotechnical investigations-an example from Chania, Greece", J. Geophys. Eng., 5(2), 186-194. https://doi.org/10.1088/1742-2132/5/2/005.
- Suwansawat, S. and Einstein, H.H. (2006), "Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling", Tunn. Undergr. Sp. Tech., 21(2), 133-150. https://doi.org/10.1016/j.tust.2005.06.007.
- Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014), "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel Compos. Struct., 17(5), 623-639. http://dx.doi.org/10.12989/scs.2014.17.5.000.
- Utt, W.K. (1999), "Neural network technology for strata strength characterization", Proceedings of the International Joint Conference on Neural Networks, Middleton, Wisconsin, U.S.A., July.
- Utt, W.K., Miller, G.G., Howie, W.L. and Woodward, C.C. (2002), "Drill monitor with strata strength classification in near-real time", Report of Investigations, No. 2002-2141, National