DOI QR코드

DOI QR Code

Crack development and coalescence process in drying clayey loess

  • Wei, Xin (School of Human Settlement and Civil Engineering, Xi'an Jiaotong University) ;
  • Hattab, Mahdia (Laboratory of Microstructures and Mechanics of Materials, University of Lorraine) ;
  • Taibi, Said (Laboratory of Waves and Complex Media, University of Havre) ;
  • Bicalho, Katia V. (Department of Civil Engineering, Federal University of Espirito Santo) ;
  • Xu, Ling (School of Human Settlement and Civil Engineering, Xi'an Jiaotong University) ;
  • Fleureau, Jean-Marie (Laboratory of Mechanics of Soils, Structures and Materials, Paris-Saclay University)
  • 투고 : 2020.09.01
  • 심사 : 2021.06.16
  • 발행 : 2021.06.25

초록

The Chinese Loess Plateau is located in northwestern China. During investigations in loess fields, it was found that, under dry climatic conditions, cracks were prone to appear and propagate in the loess plateau. The presence of cracks and their effect on the engineering properties of loess greatly influence the stability of soil-based structures and can cause severe damages. The purpose of this research was to analyze the drying-induced cracking mechanisms in clayey loess, and to highlight the effect of soil mineralogy. Laboratory tests were performed to simulate the cracking process in loess. The analysis is based on the local two-dimensional strain and displacement fields derived from the Digital Image Correlation (DIC) method and the software VIC-2D. The determination of the mechanical strain tensors, i.e., the difference between the total strain and shrinkage strain tensors, and their visual representation allow a deeper understanding of cracking mechanisms. Based on the above methods, crack development and crack coalescence processes were observed and analyzed. Besides, other mechanisms were identified, such as junction and bifurcation of cracks.

키워드

과제정보

This work was supported by Program XU GUANGQI 2018, n°41221YC of Campus France, the National Key Research and Development Program of China (No. 2018YFC1504700), the China Postdoctoral Science Foundation (No. 2017M623180) and the National Natural Science Foundation of Youth (No. 42007278).

참고문헌

  1. Abd El-Halim, A.A. (2017), "Image processing technique to assess the use of sugarcane pith to mitigate clayey soil cracks: Laboratory experiment", Soil Till. Res., 169, 138-145. https://doi.org/10.1016/j.still.2017.02.007.
  2. Amarasiri, A.L. and Kodikara, J.K. (2013), "Numerical modelling of a field desiccation test", Geotechnique, 63(11), 983-986. https://doi.org/10.1680/geot.12.P.010.
  3. ASTM. (2011), Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM standard D2487. American Society for Testing and Materials, West Conshohocken, Pennsylvania, U.S.A.
  4. Auvray, R., Rosin-Paumier, S., Abdallah, A. and Masrouri, F. (2014), "Quantification of soft soil cracking during suction cycles by image processing", Eur. J. Environ. Civ. Eng., 18(1), 11-32. https://doi.org/10.1080/19648189.2013.840250.
  5. Avila, G. (2004), "Study of shrinkage and cracking of clays - application to clay in Bogota", Ph.D. Dissertation, Polytechnic University of Catalunya, Barcelona, Spain.
  6. Bagheripour, M., Rahgozar, R. and Pashnesaz, H. (2011), "A complement to Hoek-Brown failure criterion for strength prediction in anisotropic rock", Geomech. Eng., 3(1), 61-81. https://doi.org/10.12989/gae.2011.3.1.061.
  7. Baker, R. (1981), "Tensile strength, tension cracks, and stability of slopes", Soils Found., 21(2), 1-17. https://doi.org/10.3208/sandf1972.21.2_1.
  8. Bazant, Z.P. and Wittmann, F.H. (1982), Creep and Shrinkage in Concrete Structures, Wiley, New York, U.S.A.
  9. Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/s0148-9062(98)00005-9.
  10. Bombolakis, E.G. (1963), "Photoelastic stress analysis of crack propagation within a compressive stress field", Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.
  11. Bronswijk, J.J.B. (1990), "Shrinkage geometry of a heavy clay soil at various stresses", Soil Sci. Soc. Am. J., 54(5), 1500-1502. https://doi.org/10.2136/sssaj1990.03615995005400050048x.
  12. Cornelis, W. M., Corluy, J., Medina, H., Diaz, J., Hartmann, R., Meirvenne, M. V. and Ruiz, M. E. (2006), "Measuring and modeling the soil shrinkage characteristic curve", Geoderma, 137(1-2), 179-191. https://doi.org/10.1016/j.geoderma.2006.08.022.
  13. Cordero, J., Cuadrado, A., Prat, P. and Ledesma, A. (2016), "Description of a field test involving cracking in a drying soil", Proceedings of the 3rd European Conference on Unsaturated Soils, Paris, France, December.
  14. Costa, S., Kodikara, J., Barbour, S.L. and Fredlund, D.G. (2017), "Theoretical analysis of desiccation crack spacing of a thin, long soil layer", Acta Geotechnica, 13(1), 39-49. https://doi.org/10.1007/s11440-017-0602-9.
  15. Daux, C., Moes, N., Dolbow, J., Sukumar, N. and Belytschko, T. (2000), "Arbitrary branched and intersecting cracks with the extended finite element method", Int. J. Numer. Met. Eng., 48, 1741-1760. https://doi.org/10.1002/1097-0207(20000830)48:12<1741::aid-nme956>3.0.co;2-l.
  16. DeCarlo, K.F. and Caylor, K.K. (2019), "Biophysical effects on soil crack morphology in a faunally active dryland vertisol", Geoderma, 334,134-145. https://doi.org/10.1016/j.geoderma.2018.07.042.
  17. DeCarlo, K.F. and Shokri, N. (2014), "Salinity effects on cracking morphology and dynamics in 3-D desiccating clays", Water Resour. Res., 50, 3052-3072. https://doi.org/10.1002/2013WR014424.
  18. Eid, J., Taibi, S., Fleureau, J.M. and Hattab, M. (2015), "Drying, cracks and shrinkage evolution of a natural silt intended for a new earth building material. Impact of reinforcement", Constr. Build. Mater., 86(13), 120-132. https://doi.org/10.1016/j.conbuildmat.2015.03.115.
  19. Hirobe, S. and Oguni, K. (2017), "Modeling and numerical investigations for hierarchical pattern formation in desiccation cracking", Physica D, 359, 29-38. https://doi.org/10.1016/j.physd.2017.08.002.
  20. Kargel, J.S., Schreiber Jr, J.F. and Sonett, C.P. (1996), "Mud cracks and dedolomitization in the Wittenoom Dolomite, Hamersley Group, Western Australia", Global Planet. Change, 14, 73-96. https://doi.org/10.1016/0921-8181(95)00055-0.
  21. Kobayashi, S., Inomata, T., Kobayashi, H., Tsurekawa, S. and Watanabe, T. (2008), "Effects of grain boundary- and triple junction-character on intergranular fatigue crack nucleation in polycrystalline aluminum", J. Mater. Sci., 43, 3792-3799. https://doi.org/10.1007/s10853-007-2236-z.
  22. Kodikara, J. and Costa, S. (2013), Desiccation cracking in clayey Soils: Mechanisms and Modelling in Multiphysical Testing of Soils and Shales, Springer Press, Berlin, Germany, 21-32.
  23. Konrad, J.M. and Ayad, R. (1997), "An idealized framework for the analysis of cohesive soils undergoing desiccation", Can. Geotech. J., 34, 477-488. https://doi.org/10.1139/t97-015.
  24. Lakshmikantha, M.R., Prat, P.C. and Ledesma, A. (2009), "Image analysis for the quantification of a developing crack network on a drying soil", Geotech. Test. J., 32(6), 505-515. https://doi.org/10.1520/GTJ102216.
  25. Lee, F.H., Lo, K.W. and Lee, S.L. (1988), "Tension crack development in soils", J. Geotech. Eng., 114(8), 915-929. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:8(915).
  26. Lee, H.W. and Jeon, S.W. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solids Struct., 48, 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
  27. Li, Y.P., Wang, Y.H. and Chen, L.Z. (2005), "Experimental research on pre-cracked marble under compression", Int. J. Solids Struct., 42(9), 2505-2516. https://doi.org/10.1016/j.ijsolstr.2004.09.033.
  28. Li, J.H. and Zhang, L.M. (2011), "Study of desiccation crack initiation and development at ground surface", Eng. Geol., 123 (4), 347-358. https://doi.org/10.1016/j.enggeo.2011.09.015.
  29. Li, J.H., Li, L., Chen, R. and Li, D.Q. (2016), "Cracking and vertical preferential flow through landfill clay liners", Eng. Geol., 206, 33-41. https://doi.org/10.1016/j.enggeo.2016.03.006.
  30. Li, J.H., Lu, Z., Guo, L.B. and Zhang, L.M. (2017), "Experimental study on soil-water curve for silty clay with desiccation cracks", Eng. Geol., 218, 70-76. https://doi.org/10.1016/j.enggeo.2017.01.004.
  31. Li, H.D., Tang, C.S., Cheng, Q., Li, S.J., Gong, X.P. and Shi, B. (2019), "Tensile strength of clayey soil and the strain analysis based on image processing techniques", Eng. Geol., 253, 137-148. https://doi.org/10.1016/j.enggeo.2019.03.017.
  32. Li, Z.S., Benchouk, A., Derfouf, F.M., Abou-Bekr, N., Taibi, S., Souli, H. and Fleureau J.M. (2018), "Global representation of the drying-wetting curves of four engineering soils: Experiments and correlations", Acta Geotech., 13(1), 51-71. https://doi.org/10.1007/s11440-017-0527-3.
  33. Liang, J., Huang, R., Prevost, J.H. and Suo, Z. (2003), "Evolving crack patterns in thin films with the extended finite element method", Int. J. Solids Struct., 40, 2343-2354. https://doi.org/10.1016/S0020-7683(03)00095-7.
  34. Liu, D.S. (1965), The Loess Sedimentation of China, Science Press, Beijing, China (in Chinese).
  35. Lu, H., Li, J., Wang, W. and Wang, C. (2015), "Cracking and water seepage of Xiashu loess used as landfill cover under wetting-drying cycles", Environ. Earth Sci., 74(11), 7441-7450. https://doi.org/10.1007/s12665-015-4729-4.
  36. Lu, Q., Peng, J., Zhixin, C. and Li, X.A. (2005), "Research on characteristics of cracks and fissures of loess and their distribution in loess plateau of China", J. Soil Water Conserv., 19(5), 191-194 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1009-2242.2005.05.048
  37. Mathieu, F., Hild, F. and Roux, S. (2011), "Fatigue crack propagation law measured from integrated digital image correlation: The example of Ti35 thin sheets", Proc. Eng., 10(4), 1091-1096. https://doi.org/10.1016/j.proeng.2011.04.180.
  38. Pan, B., Qian, K., Xie, H. and Asundi, A. (2009), "Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review", Measmt Sci. Technol., 20(6), 062001. https://doi.org/10.1088/0957-0233/20/6/062001.
  39. Panaghi, K., Golshani, A. and Takemura, T. (2015), "Rock failure assessment based on crack density and anisotropy index variations during triaxial loading tests", Geomech. Eng., 9(6), 793-813. https://doi.org/10.12989/gae.2015.9.6.793.
  40. Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws: A comparison", Int. J. Rock Mech. Min. Sci., 46, 819-829. https://doi.org/10.1016/j.ijrmms.2009.02.006.
  41. Park, C.H. and Bobet, A. (2010), "Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression", Eng. Fract. Mech., 77, 2727-2748. https://doi.org/10.1016/j.engfracmech.2010.06.027.
  42. Pasricha, K., Wad, U., Pasricha, R. and Ogale, S. (2009), "Parametric dependence studies on cracking of clay", Physica A, 388, 1352-1358. https://doi.org/10.1016/j.physa.2008.12.039.
  43. Peng, X., Horn, R., Peth, S. and Smucker, A. (2006), "Quantification of soil shrinkage in 2D by digital image processing of soil surface", Soil Till. Res., 91 (1-2), 173-180. https://doi.org/10.1016/j.still.2005.12.012.
  44. Peron, H. (2008), "Desiccation cracking of soils", Ph.D Thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
  45. Peron, H., Hueckel, T., Laloui, L. and Hu, L.B. (2009), "Fundamentals of desiccation cracking of finegrained soils: Experimental characterization and mechanisms identification", Can. Geotech. J., 46(10), 1177-1201. https://doi.org/10.1139/t09-054.
  46. Reyes, O. and Einstein, H.H. (1991), "Failure mechanisms of fractured rock-a fracture coalescence model", Proceedings of the 7th International Congress of Rock & Mechanics, Aachen, Germany, September.
  47. Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39, 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8.
  48. Shannon, B., Kodikara, J. and Rajeev, P. (2015), "The use of restrained ring test method for soil desiccation studies", Geotech. Test. J., 38(1), 98-112. https://doi.org/10.1520/GTJ20130131.
  49. Shen, B. and Barton, N. (2018), "Rock fracturing mechanisms around underground openings", Geomech. Eng., 16(1), 35-47. https://doi.org/10.12989/gae.2018.16.1.035.
  50. Silvestri, V., Sarkis, G., Bekkouche, N. and Soulie, M. (1992), "Evapotranspiration, trees and damage to foundations in sensitive clays", Proceedings of the Canadian Geotechnical Conference, Toronto, Canada, October.
  51. Sun, P. (2007), "Experimental research on rupture mechanisms of loess", Ph.D. Dissertation, Chang'an University, Xi'an, China. (in Chinese with English abstract).
  52. Sun, W., Du, H., Zhou, F. and Shao, J. (2019), "Experimental study of crack propagation of rock-like specimens containing conjugate fractures", Geomech. Eng., 17(4), 323-331. https://doi.org/10.12989/gae.2019.17.4.323.
  53. Sun, X.Z., Shen, B. and Zhang, B.L. (2018), "Experimental study on propagation behavior of three-dimensional cracks influenced by intermediate principal stress", Geomech. Eng., 14(2), 195-202. https://doi.org/10.12989/gae.2018.14.2.195
  54. Tang, C.A. and Kou, S.Q. (1998), "Crack propagation and coalescence in brittle materials under compression", Eng. Fract. Mech., 61, 311-324. https://doi.org/10.1016/S0013-7944(98)00067-8.
  55. Tang, C.S., Shi, B., Liu, C., Zhao, L.Z. and Wang, B.J. (2008), "Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils", Eng. Geol., 101(3-4), 204-217. https://doi.org/10.1016/j.enggeo.2008.05.005.
  56. Tang, C.S., Cui, Y.J., Tang, A.M. and Shi, B. (2010), "Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils", Eng. Geol., 114(3-4), 261-266. https://doi.org/10.1016/j.enggeo.2010.05.003.
  57. Tang, C.S., Shi, B., Liu, C., Suo, W.B. and Gao, L. (2011), "Experimental characterization of shrinkage and desiccation cracking in thin clay layer", Appl. Clay Sci., 52(1-2), 69-77. https://doi.org/10.1016/j.clay.2011.01.032.
  58. Tay, Y.Y., Stewart, D.I. and Cousens, T.W. (2001), "Shrinkage and desiccation cracking in bentonite - sand landfill liners", Eng. Geol., 60(1), 263-274. https://doi.org/10.1016/S0013-7952(00)00107-1.
  59. Trabelsi, H., Jamei, M., Zenzri, H. and Olivella, S. (2012), "Crack patterns in clayey soils: Experiments and Modeling", Int. J. Numer. Anal. Methods Geomech., 36, 1410-1433. https://doi.org/10.1002/nag.1060.
  60. Wang, J. (2000), Theory and Application of Ground Fissures, Shaanxi Science and Technology Press, Xi'an, China (in Chinese).
  61. Wang, D.Y., Tang, C.S., Shi, B. and Li, J. (2016), "Studying the effect of drying on soil hydromechanical properties using micro-penetration method", Environ. Earth Sci., 75(12), 1-13. https://doi.org/10.1007/s12665-016-5836-6.
  62. Wang, L.L., Tang, C.S., Shi, B., Cui, Y.J., Zhang, G.Q. and Hilary I. (2018), "Nucleation and propagation mechanisms of soil desiccation cracks", Eng. Geol., 238, 27-35. https://doi.org/10.1016/j.enggeo.2018.03.004.
  63. Wei, X. (2014), "Micro-macro study of cracks in clays related to desiccation", Ph.D Dissertation, Ecole Centrale Paris, Chatenay Malabry, France.
  64. Wei, X., Hattab, M. and Fleureau, J.M. (2013), "Micro-macro-experimental study of two clayey materials on drying paths", B. Eng. Geol. Environ., 72, 495-508. https://doi.org/10.1007/s10064-013-0513-4.
  65. Wei, X., Hattab M., Bompard P. and Fleureau, J.M. (2016), "Highlighting some mechanisms of crack formation and propagation in clays on drying path", Geotechnique, 66(4), 287-300. https://doi.org/10.1680/jgeot.14.p.227.
  66. Wei, X., Bicalho, K.V.., Hajjar, A.E., Taibi, S., Hattab, M. and Fleureau, J.M. (2021), "Experimental techniques for the study of the cracking mechanisms in drying clays", Geotech. Test. J., 44(2), 323-338. https://doi.org/10.1520/GTJ20190430.
  67. Willden, R. and Mabey, D.R. (1961), "Giant desiccation fissures on the black rock and smoke creek deserts, Nevada", Science, 133(3461), 1359-1360. https://doi.org/10.1126/science.133.3461.1359.
  68. Wong, R.H.C., Chau, K.T., Tang, C.A. and Lin, P. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-Part I: Experimental approach", Int. J. Rock Mech. Min. Sci., 38, 909-924. https://doi.org/10.1016/S1365-1609(01)00064-8.
  69. Wu, T., Lan, J.W., Qiu, Q.W., He, H.J. and Li, H. (2017), "Behavior and influence of desiccation cracking in loess landfill covers", IOP Conf. Ser. Earth Environ. Sci., 94(1), 012084. https://doi.org/10.1088/1755-1315/94/1/012084.
  70. Xu, L. and Coop, M. (2016), "Influence of structure on the behavior of a saturated clayey loess", Can. Geotech. J., 53, 1026-1037. https://doi.org/10.1139/cgj-2015-0200.
  71. Xu, L. and Coop, M. (2017), "The mechanics of a saturated silty loess with a transitional mode", Geotechnique, 67(7), 581-596. https://doi.org/10.1680/jgeot.16.p.128.
  72. Youshida, S. and Adachi, K. (2004), "Numerical analysis of crack generation in saturated deformable soil under row-planted vegetation", Geoderma, 120, 63-74. https://doi.org/10.1016/j.geoderma.2003.08.009.
  73. Zhang, Y., Ye, W.M., Chen, Y.G. and Ye, B. (2016), "Desiccation of NaCl-contaminated soil of earthen heritages in the Site of Yar City, northwest China", Appl. Clay Sci., 124-125, 1-10. https://doi.org/10.1016/j.clay.2016.01.047.
  74. Zhang, X.D., Chen, Y.G., Ye, W.M., Cui, Y.J., Deng, Y.F. and Chen, B. (2017), "Effect of salt concentration on desiccation cracking behavior of GMZ bentonite", Environ. Earth Sci., 76, 531. https://doi.org/10.1007/s12665-017-6872-6.
  75. Zhang, T.W., Deng, Y.F., Cui, Y.J., Lan, H.X., Zhang, F.Y. and Zhang, H.Y. (2019), "Porewater salinity effect on flocculation and desiccation cracking behaviour of kaolin and bentonite considering working condition", Eng. Geol., 251, 11-23. https://doi.org/10.1016/j.enggeo.2019.02.007.
  76. Zhou, X.P., Gu, X.B. and Wang, Y.T. (2015), "Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks", Int. J. Rock Mech. Min. Sci., 80, 241-254. https://doi.org/10.1016/j.ijrmms.2015.09.006.
  77. Zhou, X.P. and Wang, Y.T. (2016), "Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics", Int. J. Rock Mech. Min. Sci., 89, 235-249. https://doi.org/10.1016/j.ijrmms.2016.09.010.