DOI QR코드

DOI QR Code

Midinfrared Pulse Compression in a Dispersion-decreasing and Nonlinearity-increasing Tapered As2S3 Photonic Crystal Fiber

  • Shen, Jianping (College of Electronic and Optical Engineering, Nanjing University of Post and Telecommunications) ;
  • Zhang, Siwei (College of Electronic and Optical Engineering, Nanjing University of Post and Telecommunications) ;
  • Wang, Wei (College of Electronic and Optical Engineering, Nanjing University of Post and Telecommunications) ;
  • Li, Shuguang (State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University) ;
  • Zhang, Song (State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University) ;
  • Wang, Yujun (State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University)
  • Received : 2020.12.30
  • Accepted : 2021.04.03
  • Published : 2021.06.25

Abstract

A tapered As2S3 photonic crystal fiber (PCF) with four layers of air holes in a hexagonal array around the core is designed in this paper. Numerical simulation shows that the dispersion D decreases and the nonlinearity coefficient γ increases from the thick to the thin end along the tapered PCF. We simulate the midinfrared pulse compression in the tapered As2S3 PCF using the adaptive split-step Fourier method. Initial Gaussian pulses of 4.4 ps and a central wavelength of 2.5 ㎛ propagating in the tapered PCF are located in the anomalous dispersion region. With an average power of assumed input pulses at 3 mW and a repetition frequency of 81.0 MHz, we theoretically obtain a pulse duration of 56 fs and a compression factor of 78 when the pulse propagates from the thick end to the thin end of the tapered PCF. When confinement loss in the tapered PCF is included in the simulation, the minimum pulse duration reaches 72 fs; correspondingly, the maximum compression factor reaches 61. The results show that in the anomalous-dispersion region, midinfrared pulses can be efficiently compressed in a dispersion-decreasing and nonlinearity-increasing tapered As2S3 PCF. Due to confinement loss in the tapered fiber, the efficiency of pulse compression is suppressed.

Keywords

Acknowledgement

This study was supported in part by the Program of the Natural Science Foundation of Hebei Province (Grant No. F2017203193), and in part by Nanjing University of Posts and Telecommunications Foundation under Grants JUH219002, JUH219007, NY215007, and NY215113. This work was supported in part by the Research Center of Optical Communications Engineering & Technology, Jiangsu Province Foundation, under Grant ZXF20170102.

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). https://doi.org/10.1364/OL.21.001547
  2. A. Ferrando, E. Silvestre, J. J. Miret, P. Andres, and M. V. Andres, "Full-vector analysis of a realistic photonic crystal fiber," Opt. Lett. 24, 276-278 (1999). https://doi.org/10.1364/OL.24.000276
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). https://doi.org/10.1364/OL.25.000025
  4. T. Alder, A. Stohr, R. Heinzelmann, and D. Jager, "High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber," IEEE Photon. Technol. Lett. 12, 1016-1018 (2000). https://doi.org/10.1109/68.867993
  5. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, "Soliton self-frequency shift in a short tapered air-silica microstructure fiber," Opt. Lett. 26, 358-360 (2001). https://doi.org/10.1364/OL.26.000358
  6. H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, "Tapered photonic crystal fibres: properties, characterization, and applications," Appl. Phys. B 81, 377-387 (2005). https://doi.org/10.1007/s00340-005-1901-7
  7. H. Pakarzadeh and S. M. Rezaei, "Modeling of dispersion and nonlinear characteristics of tapered photonic crystal fibers for applications in nonlinear optics," J. Mod. Opt. 63, 151-158 (2016). https://doi.org/10.1080/09500340.2015.1071886
  8. C. L. Arnold, S. Akturk, M. Franco, A. Couairon, and A. Mysyrowicz, "Compression of ultrashort laser pulses in planar hollow waveguides: a stability analysis," Opt. Express 17, 11122-11129 (2009). https://doi.org/10.1364/OE.17.011122
  9. S. Hadrich, J. Rothhardt, T. Eidam, J. Limpert, and A. Tunnermann, "High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system," Opt. Express 17, 3913-3922 (2009). https://doi.org/10.1364/OE.17.003913
  10. D. Wang, Y. Leng, and Z. Xu, "Optical pulse compression of ultrashort laser pulses in a multi-hollow-core fiber," Opt. Commun. 285, 2418-2421 (2012). https://doi.org/10.1016/j.optcom.2012.01.026
  11. I. Martial, D. Papadopoulos, M. Hanna, F. Druon, and P. Georges, "Nonlinear compression in a rod-type fiber for high energy ultrashort pulse generation," Opt. Express 17, 11155-11160 (2009). https://doi.org/10.1364/OE.17.011155
  12. A. A. Voronin and A. M. Zheltikov, "Soliton-number analysis of soliton-effect pulse compression to single-cycle pulse widths," Phys. Rev. A 78, 063834 (2008). https://doi.org/10.1103/physreva.78.063834
  13. A. M. Zheltikov, "Spectral broadening and compression to few-cycle pulse widths in the regime of soliton-self-frequency shift," Opt. Soc. Am. B 26, 946-950 (2009). https://doi.org/10.1364/JOSAB.26.000946
  14. Q. Jing, H. Ma, X. Zhang, Y. Huang, and X. Ren, "Supercontinuum broadening in all-normal dispersion photonic crystal fiber by means of soliton compression in standard single-mode fiber," Opt. Commun. 285, 2917-2923 (2012). https://doi.org/10.1016/j.optcom.2012.02.021
  15. K.-T. Chan and W.-H. Cao, "Improved soliton-effect pulse compression by combined action of negative third-order dispersion and Raman self-scattering in optical fibers," J. Opt. Soc. Am. B 15, 2371-2735 (1998). https://doi.org/10.1364/JOSAB.15.002371
  16. K.-T. Chan and W.-H. Cao, "Enhanced soliton-effect pulse compression by cross-phase modulation in optical fibers," Opt. Commun. 178, 79-88 (2000). https://doi.org/10.1016/S0030-4018(00)00644-1
  17. Z. Shumin, L. Fuyun, X. Wencheng, Y. Shiping, W. Jian, and D. Xiaoyi, "Enhanced compression of high-order solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering," Opt. Commun. 237, 1-8 (2004). https://doi.org/10.1016/j.optcom.2004.03.068
  18. M. D. Pelusi and H.-F. Liu, "Higher order soliton pulse compression in dispersion-decreasing optical fibers," IEEE J. Quantum Electron. 33, 1430-1439 (1997). https://doi.org/10.1109/3.605567
  19. J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, "Optical pulse compression in dispersion decreasing photonic crystal fiber," Opt. Express 15, 13203-13211 (2007). https://doi.org/10.1364/OE.15.013203
  20. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006). https://doi.org/10.1364/OE.14.005715
  21. H. Pakarzadeh, "Parametric amplification in tapered photonic crystal fibers with longitudinally decreasing zero-dispersion wavelength," Optik 126, 5509-5512 (2015). https://doi.org/10.1016/j.ijleo.2015.09.045
  22. J. Hu, B. S. Marks, and C. R. Menyuk, "Pulse compression using a tapered microstructure optical fiber," Opt. Express 14, 4026-4036 (2006). https://doi.org/10.1364/OE.14.004026
  23. M. Wen-Wen, L. Shu-Guang, Y. Guo-Bing, F. Bo, and Z. Lei, "Study on pulse compression in tapered holey fibres," Chin. Phys. B 19, 104208 (2010). https://doi.org/10.1088/1674-1056/19/10/104208
  24. F. Li, Q. Li, J. Yuan, and P. K. A. Wai, "Highly coherent super-continuum generation with picosecond pulses by using selfsimilar compression," Opt. Express 22, 27339-27354 (2014). https://doi.org/10.1364/OE.22.027339
  25. H. Song, B. Liu, W. Chen, Y. Li, Y. Song, S. Wang, L. Chai, C. Wang, and M. Hu, "Femtosecond laser pulse generation with self-similar amplification of picosecond laser pulses," Opt. Express 26, 26411-26421 (2018). https://doi.org/10.1364/oe.26.026411
  26. H. Pakarzadeh, M.Taghizadeh, and M. Hatami, "Designing a photonic crystal fiber for an ultra-broadband parametric amplification in telecommunication region," J. Nonlinear Opt. Phys. Mater. 25, 1650023 (2016). https://doi.org/10.1142/S0218863516500235
  27. M. Taghizadeh, M. Hatami, H. Pakarzadeh, and M. K. Tavassoly, "Pulsed optical parametric amplification based on photonic crystal fibres," J. Mod. Opt. 64, 357-365 (2017). https://doi.org/10.1080/09500340.2016.1237684
  28. H. Pakarzadeh and M. Sharifian, "Modelling of a variable optical switch based on the parametric amplification in a photonic crystal fibre," J. Mod. Opt. 65, 1855-1859 (2018). https://doi.org/10.1080/09500340.2018.1465603
  29. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, "Efficient mid-infrared laser using 1.9-㎛-pumped Ho:YAG and ZnGeP2 optical parametric oscillators," J. Opt. Soc. Am. B 17, 723-728 (2000). https://doi.org/10.1364/JOSAB.17.000723
  30. J. S. Nelson, J. L. McCullough, T. C. Glenn, W. H. Wright, L.-H. L. Liaw, and S. L. Jacques, "Mid-Infrared laser ablation of stratum corneum enhances in vitro percutaneous transport of drugs," J. Invest. Dermatol. 97, 874-879 (1991). https://doi.org/10.1111/1523-1747.ep12491600
  31. X.-Y. Wang, S.-G. Li, S. Liu, G.-B. Yin, and J.-S. Li, "Generation of mid-infrared broadband polarized supercontinuum in As2Se3 photonic crystal fibers," Chinese Phys. B 21, 054220 (2012). https://doi.org/10.1088/1674-1056/21/5/054220
  32. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, "Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers," Opt. Express 18, 6722-6739 (2010). https://doi.org/10.1364/OE.18.006722
  33. L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005). https://doi.org/10.1364/OPEX.13.007637
  34. A. C. Judge, S. A. Dekker, R. Pant, C. M. de Sterke, and B. J. Eggleton, "Soliton self-frequency shift performance in As2S3 waveguides," Opt. Express 18, 14960-14968 (2010). https://doi.org/10.1364/OE.18.014960
  35. H. Balani, G. Singh, M. Tiwari, V. Janyani, and A. K. Ghunawat, "Supercontinuum generation at 1.55 ㎛ in As2S3 core photonic crystal fiber," Appl. Opt. 57, 3524-3533 (2018). https://doi.org/10.1364/AO.57.003524
  36. S. Kalra, S. Vyas, M. Tiwari, B. Oleg, and G. Singh, "Highly nonlinear multi-material chalcogenide spiral photonic crystal fiber for supercontinuum generation," Acta Phts. Pol. A 133, 1000-1002 (2018). https://doi.org/10.12693/APhysPolA.133.1000
  37. T. J. Carrig, G. J. Wagner, A. Sennaroglu, J. Y. Jeong, and C. R. Pollock, "Mode-locked Cr2+:ZnSe laser," Opt. Lett. 25, 168-170 (2000). https://doi.org/10.1364/OL.25.000168
  38. A. V. Husakou and J. Herrmann, "Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses," Appl. Phys. B 77, 227-234 (2003). https://doi.org/10.1007/s00340-003-1227-2
  39. M. Bass, Handbook of Optics, (McGraw-Hill Professional, NY, USA. 1994), Vol. 2.
  40. S. Musikant, Optical Materials, a Series of Advances (Marcel Dekker, NY, USA. 1990), Vol. 1, pp. 275-276.
  41. B. T. Kuhlmey, H. C. Nguyen, M. J. Steel, and B. J. Eggleton, "Confinement loss in adiabatic photonic crystal fiber tapers," J. Opt. Soc. Am. B 23, 1965-1974 (2006). https://doi.org/10.1364/JOSAB.23.001965
  42. G. P. Agrawal, "Nonlinear Fiber Optics," in Nonlinear Science at the Dawn of the 21st Century, P. L. Christiansen, M. P. Sorensen, and A. C. Scott, Eds., 3rd ed. (Springer, Berlin, Germany. 2001).
  43. S. Li, L. Zhang, B. Fu, Y. Zheng, Y. Han, and X. Zhao, "Wave breaking in tapered holey fibers," Chin. Opt. Lett. 9, 030601 (2011). https://doi.org/10.3788/COL20110903.030601