과제정보
This research was supported by the Fundamental Research Funds for the Central Universities (2021QN1010).
참고문헌
- Aker, E., Kuhn, D., Vavrycuk, V., Soldal, M. and Oye, V. (2014), "Experimental investigation of acoustic emissions and their moment tensors in rock during failure", Int. J. Rock Mech. Min. Sci., 70, 286-295. https://doi.org/10.1016/j.ijrmms.2014.05.003.
- Cao, R.H., Cao, P., Lin, H., Fan, X., Zhang, C.Y. and Liu, T.Y. (2019), "Crack Initiation, propagation, and failure characteristics of jointed rock or rock-like specimens: A review", Adv. Civ. Eng., 6975751. https://doi.org/10.1155/2019/6975751.
- Carter, B.J., Lajtai, E.Z. and Petukhov, A. (1991), "Primary and remote fracture around underground cavities", Int. J. Numer. Anal. Met., 15(1), 21-40. https://doi.org/10.1002/nag.1610150103.
- Choi, S. and Shah, S.P. (1997), "Measurement of deformations on concrete subjected to compression using image correlation", Exp. Mech., 37(3), 307-313. https://doi.org/10.1007/BF02317423.
- Cress, G.O., Brady, B.T. and Rowell, G.A. (1987), "Sources of electromagnetic radiation from fracture of rock samples in the laboratory", Geophys. Res. Lett., 14(4), 331-334. https://doi.org/10.1029/GL014i004p00331.
- Dang, W.G., Konietzky, H., Herbst, M. and Fruhwirt T. (2020), "Cyclic frictional responses of planar joints under cyclic normal load conditions: Laboratory tests and numerical simulations", Rock Mech. Rock Eng., 53, 337-364. https://doi.org/10.1007/s00603-019-01910-9.
- Dang, W.G., Wu, W., Konietzky, H. and Qian, J.Y. (2019), "Effect of shear-induced aperture evolution on fluid flow in rock fractures", Comput. Geotech., 114, 103152. https://doi.org/10.1016/j.compgeo.2019.103152.
- Dzik, E.J. and Lajtai, E.Z. (1996), "Primary fracture propagation from circular cavities loaded in compression", Int. J. Fract., 79(1), 49-64. https://doi.org/10.1007/BF00017712.
- Fakhimi, A., Carvalho, F., Ishida, T. and Labuz, J.F. (2002), "Simulation of failure around a circular opening in rock", Int. J. Rock Mech. Min. Sci., 39, 507-515. https://doi.org/10.1016/S1365-1609(02)00041-2.
- Fonseka, G.M., Murrell, S.A.F. and Barnes, P. (1985), "Scanning electron microscope and acoustic emission studies of crack development in rocks", Int. J. Rock Mech. Min. Sci., 22(5), 273-289. https://doi.org/10.1016/0148-9062(85)92060-1.
- Haeri, H., Khaloo, A. and Marji, M.F. (2015), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mechanica Sinica, 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3.
- Hoek, E. (1965), "Rock fracture under static stress conditions", Research Report No. MEG383, University of Cape Town, Pretoria, The Republic of South Africa.
- Huang, Y.H., Yang S.Q. and Tian, W.L. (2019), "Cracking process of a granite specimen that contains multiple pre-existing holes under uniaxial compression", Fatigue Fract. Eng. M., 42(6), 1341-1356. https://doi.org/10.1111/ffe.12990.
- Janeiro, R.P. and Einstein, H.H. (2010), "Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)", Int. J. Fract, 164(1), 83-102. https://doi.org/10.1007/s10704-010-9457-x.
- Jespersen, C., Maclaughlin, M. and Hudyma, N. (2010), "Strength, deformation modulus and failure modes of cubic analog specimens representing macroporous rock", Int. J. Rock Mech. Min. Sci., 47(8) 1349-1356. https://doi.org/10.1016/j.ijrmms.2010.08.015.
- La, Y.S. and Kim, B. (2020), "Stability evaluation of a double-deck tunnel with diverging section", Geomech. Eng., 21(2), 123-132. http://doi.org/10.12989/gae.2020.21.2.123.
- Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in precracked specimens under uniaxial compression", Int. J. Solids Struct., 48(6) 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
- Lee, H., Oh, T.M. and Park, C. (2020a), "Analysis of permeability in rock fracture with effective stress at deep depth", Geomech. Eng., 22(5), 375-384. http://dx.doi.org/10.12989/gae.2020.22.5.375.
- Lee, K.Y., Lee, I.M. and Shin, Y.J. (2020b), "Quantitative assessment of depth and extent of notch brittle failure in deep tunneling using inferential statistical analysis", Geomech. Eng., 21(2), 201-206. http://doi.org/10.12989/gae.2020.21.2.201.
- Luo, Y. (2020), "Influence of water on mechanical behavior of surrounding rock in hard-rock tunnels: An experimental simulation", Eng. Geol., 277, 105816. https://doi.org/10.1016/j.enggeo.2020.105816.
- Lotidis, M.A., Nomikos, P.P. and Sofianos, A.I. (2019), "Numerical study of the fracturing process in marble and plaster hollow plate specimens subjected to uniaxial compression", Rock Mech. Rock Eng., 52(11), 4361-4386. https://doi.org/10.1007/s00603-019-01884-8.
- Ma, D., Duan, H.Y., Li, W.X., Zhang, J.X., Liu, W.T. and Zhou, Z.L. (2020), "Prediction of water inflow from fault by particle swarm optimization-based modified grey models", Environ. Sci. Pollut. Res., 27, 42051-42063. https://doi.org/10.1007/s11356-020-10172-w.
- Ma, D., Zhang, J.X., Duan, H.Y., Huang, Y.L., Li, M., Sun, Q. and Zhou, N. (2021), "Reutilization of gangue wastes in underground backfilling mining: Overburden aquifer protection", Chemosphere, 264(1), 128400. https://doi.org/10.1016/j.chemosphere.2020.128400.
- Martin, C.D. (1993), "Strength of massive Lac du Bonnet granite around underground openings", Ph.D. Dissertation, University of Manitoba, Manitoba, Canada.
- Maruvanchery, V. and Kim E. (2020), "Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone", Geomech. Eng., 17(1), 57-67. http://dx.doi.org/10.12989/gae.2019.17.1.057.
- Mellor, M. and Hawkes, I. (1971), "Measurement of tensile strength by diametral compression of discs and annuli", Eng. Geol., 5(3), 173-225. https://doi.org/10.1016/0013-7952(71)90001-9.
- Peng, L., Wong, R.H.C. and Tang, C.A. (2015), "Experimental study of coalescence mechanisms and failure under uniaxial compression of granite containing multiple holes", Int. J. Rock Mech. Min. Sci., 77, 313-327. https://doi.org/10.1016/j.ijrmms.2015.04.017.
- Sammis, C.G. and Ashby, M.F. (1986), "The failure of brittle porous solids under compressive stress states", Acta Metall. Sin., 34(3), 511-526. https://doi.org/10.1016/0001-6160(86)90087-8.
- Tang, C.A., Wong, R.H.C., Chau, K.T. and Lin, P. (2005), "Modeling of compression-induced splitting failure in heterogeneous brittle porous solids", Eng. Fract. Mech., 72(4), 597-615. https://doi.org/10.1016/j.engfracmech.2004.04.008.
- Tao, M., Ma, A., Cao, W.Z., Li, X.B. and Gong, F.Q. (2017), "Dynamic response of pre-stressed rock with a circular cavity subject to transient loading", Int. J. Rock Mech. Min. Sci., 99, 1-8. https://doi.org/10.1016/j.ijrmms.2017.09.003.
- Tasdemir M.A., Maji, A.K. and Shah S.P. (1990), "Crack propagation in concrete under compression", J. Eng. Mech., 116(5), 1058-1076. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:5(1058).
- Ulusay, R. and Hudson, J.A. (2007), The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006, ISRM Turkish National Group, Ankara, Turkey.
- Wagner, H. (2019), "Deep mining: A rock engineering challenge", Rock Mech. Rock Eng., 52(5), 1417-1446. https://doi.org/10.1007/s00603-019-01799-4.
- Wang, S.H., Lee, C.I., Ranjith, P.G. and Tang, C.A. (2009), "Modeling the effects of heterogeneity and anisotropy on the excavation damaged/disturbed zone (EDZ)", Rock Mech. Rock Eng., 42, 229-258. https://doi.org/10.1007/s00603-009-0177-3.
- Wang, S.Y., Sloan, S.W., Sheng, D.C. and Tang, C.A. (2012), "Numerical analysis of the failure process around a circular opening in rock", Comput. Geotech., 39, 8-16. https://doi.org/10.1016/j.compgeo.2011.08.004.
- Wang, S.Y., Sun, L., Yang, C.H., Yang, S.Q. and Tang, C.A. (2013), "Numerical study on static and dynamic fracture evolution around rock cavities", J. Rock Mech. Geotech. Eng., 5(4), 262-276. https://doi.org/10.1016/j.jrmge.2012.10.003.
- Weng, L., Li, X.B., Shang, X.Y. and Xie, X.F. (2018), "Fracturing behavior and failure in hollowed granite rock with static compression and coupled static-dynamic loads", Int. J. Geomech., 18(6), 04018045. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001132.
- Wennberg, O.P., Rennan, L. and Basquet, R. (2009), "Computed tomography scan imaging of natural open fractures in a porous rock; geometry and fluid flow", Geophys. Prospect., 57(2), 239-249. https://doi.org/10.1111/j.1365-2478.2009.00784.x.
- Westphal, H., Surholt, I., Kiesl, C., Thern, H.F. and Kruspe, T. (2005), "NMR measurements in carbonate rocks: Problems and an approach to a solution", Pure Appl. Geophys., 162, 549-570. https://doi.org/10.1007/s00024-004-2621-3.
- Wong, R.H.C., Lin, P. and Tang, C.A. (2006), "Experimental and numerical study on splitting failure of brittle solids containing single pore under uniaxial compression", Mech. Mater., 38(1-2), 142-159. https://doi.org/10.1016/j.mechmat.2005.05.017.
- Wu, H., Kulatilake, P.H.S.W., Zhao, G.Y., Liang, W.Z. and Wang, E.J. (2019), "A comprehensive study of fracture evolution of brittle rock containing an horseshoe-shaped cavity under uniaxial compression", Comput. Geotech., 116, 103219. https://doi.org/10.1016/j.compgeo.2019.103219.
- Wu, H., Zhao, G.Y. and Liang, W.Z. (2019), "Mechanical response and fracture behavior of brittle rocks containing two horseshoe-shaped holes under uniaxial loading", Appl. Sci., 9(24), 5327. https://doi.org/10.3390/app9245327.
- Wu, H., Zhao, G.Y. and Liang, W.Z. (2020), "Mechanical properties and fracture characteristics of pre-holed rocks subjected to uniaxial loading: A comparative analysis of five hole shapes", Theor. Appl. Fract. Mec., 105, 102433. https://doi.org/10.1016/j.tafmec.2019.102433.
- Wu, H., Zhao, G.Y. and Liang, W.Z. (2019), "Investigation of cracking behavior and mechanism of sandstone specimens with a hole under compression", Int. J. Mech. Sci., 163, 105084. https://doi.org/10.1016/j.ijmecsci.2019.105084.
- Wu, Y.H., Cheng, L.S., Killough, J., Huang, S.J., Fang, S.D., Jia, P., Cao, R.Y. and Xue, Y.C. (2021), "Integrated characterization of the fracture network in fractured shale gas Reservoirs-Stochastic fracture modeling, simulation and assisted history matching", J. Petrol. Sci. Eng., 205, 108886. https://doi.org/10.1016/j.petrol.2021.108886.
- Yamaguchi, I. (1981), "A laser-speckle strain gauge", J. Phys. E Sci. Instrum., 14(11), 1270-1273. https://doi.org/10.1088/0022-3735/14/11/012.
- Zeng, W., Yang, S.Q. and Tian, W.L. (2018), "Experimental and numerical investigation of brittle sandstone specimens containing different shapes of holes under uniaxial compression", Eng. Fract. Mech., 200, 430-450. https://doi.org/10.1016/j.engfracmech.2018.08.016.
- Zhu, W.C., Liu, J.S., Tang, C.A., Zhao, X.D. and Brady, B.H. (2005), "Simulation of progressive fracturing processes around underground excavations under biaxial compression", Tunn. Undergr. Sp. Tech., 20(3), 231-247. https://doi.org/10.1016/j.tust.2004.08.008.
- Zakharov, E.V. and Kurilko, A.S. (2014), "Effects of low temperatures on strength and power input into rock failure", Sci. Cold Arid Reg., 6(5), 0455-0460. https://doi.org/10.3724/SP.J.1226.2014.00455.
- Zerhouny, M., Fadil, A. and Hakdaoui, M. (2018) "Underground space utilization in the urban land-use planning of Casablanca (Morocco)", Land, 7(4), 143. https://doi.org/10.3390/land7040143.
피인용 문헌
- Study on Damage Evolution Model of Sandstone under Triaxial Loading and Postpeak Unloading Considering Nonlinear Behaviors vol.2021, 2021, https://doi.org/10.1155/2021/2395789
- Progressive Damage Process and Failure Characteristics of Coal under Uniaxial Compression with Different Loading Rates vol.2021, 2021, https://doi.org/10.1155/2021/3360738
- Theoretical Analysis and Numerical Simulation of the Graben Fault Instability Mechanism vol.2021, 2021, https://doi.org/10.1155/2021/6976809
- Analysis of Shear Characteristics of Deep, Anchored Rock Mass under Creep Fatigue Loading vol.2021, 2021, https://doi.org/10.1155/2021/2326237
- Quantitative Characterization of Overburden Rock Development Pattern in the Goaf at Different Key Stratum Locations Based on DEM vol.2021, 2021, https://doi.org/10.1155/2021/8011350
- Water Inrush Risk Assessment Based on AHP and Advance Forecast Approach: A Case Study in the Micangshan Tunnel vol.2021, 2021, https://doi.org/10.1155/2021/9750447
- Statistical Characterization of Damage of Different Surface P-Wave Velocity Sets under Dynamic Load and Study on Overall Radon Detection Consistency vol.2021, pp.spec, 2021, https://doi.org/10.2113/2021/2015665
- Physical Modeling of the Controlled Water-Flowing Fracture Development during Short-Wall Block Backfill Mining vol.2021, pp.spec, 2021, https://doi.org/10.2113/2021/2860087
- Hydrocarbon Gas Flooding Optimization considering Complex Fracture Networks through Numerical Simulation in the Tight Oil Reservoirs vol.2021, pp.spec, 2021, https://doi.org/10.2113/2021/4169983
- Study on the Bearing Characteristics and Application of the Filling Body in Original Roadway Filling and Nonpillar Driving vol.2021, pp.spec, 2021, https://doi.org/10.2113/2021/4238008
- Investigation on Hydraulic Fracturing and Cutting Roof Pressure Relief Technology for Underground Mines: A Case Study vol.2021, pp.spec, 2021, https://doi.org/10.2113/2021/4277645
- Research on Structural Evolution and Microseismic Response Characteristics of Overlying Strata during Repeated Mining of Steeply Inclined and Extra Thick Coal Seams vol.2021, pp.spec, 2021, https://doi.org/10.2113/2021/8047321
- Study on the Dynamic Mechanical Properties of Metamorphic Limestone under Impact Loading vol.2021, pp.spec, 2021, https://doi.org/10.2113/2021/8403502
- Rock mass watering for rock-burst prevention: some thoughts on the mechanisms deduced from laboratory results vol.80, pp.11, 2021, https://doi.org/10.1007/s10064-021-02467-0