DOI QR코드

DOI QR Code

Effects of elastic medium on the electric potential of neural tissue by using spherical bidomain Pasternak model

  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Elbahar, Mohamed (Prince Sattam Bin Abdulaziz University, College of Engineering) ;
  • Safeer, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Asghar, Sehar (Department of Mathematics, Govt. College University Faisalabad) ;
  • Mujalli, Mohammed (Prince Sattam Bin Abdulaziz University, College of Engineering) ;
  • Qazaq, Amjad (Prince Sattam Bin Abdulaziz University, College of Engineering) ;
  • Ahmad, Monzoor (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Elaloui, Elimame (Laboratory of Materials Applications in Environment, Water and Energy LR21ES15, Faculty of Sciences, University of Gafsa) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.02.25
  • Accepted : 2021.03.02
  • Published : 2021.06.25

Abstract

An isotropic Pasternak-Like model is considered to elaborate the behavior of electric potential of neural tissue when immersed within elastic medium. Special attention is paid to the non dimensionlization of the parameters of the surrounding elastic medium. We found that shear layer potential per unit area and is the Winkler foundation-like constant, are two constants of Pasternak-like model and they actually effect on the potential of neural tissue. It is found that elastic medium affects the potential behavior of neural tissue. Elastic medium effect on the potential behavior of neural tissue is due to the Pasternak foundation parameters. Therefore the surrounding medium affects the potential of neural tissue during its transportation of functioning.

Keywords

Acknowledgement

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020.

References

  1. Altman, K.W. and Plonsey, R. (1990), "Point source nerve bundle stimulation: effects of fiber diameter and depth on simulated excitation", IEEE T. Bio-Med. Eng., 37(7), 688-698. http://doi.org/10.1109/10.55679.
  2. Altman, K. and Plonsey, R. (1988), "Development of a model for point source electrical fibre bundle stimulation", Med. Biol. Eng. Comput., 26(5), 466-475. https://doi.org/10.1007/BF02441913.
  3. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., Int. J., 7(6), 443-457. http://doi.org/10.12989/anr.2019.7.6.443.
  4. Blochlinger, K., Bodmer, R., Jack, J., Jan, L.Y. and Jan, Y.N. (1988), "Primary structure and expression of a product from cut, a locus involved in specifying sensory organ identity in Drosophila", Nature, 333(6174), 629-635. https://doi.org/10.1038/333629a0.
  5. Bosch, B.J., Van der Zee, R., De Haan, C.A. and Rottier, P.J. (2003), "The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex", J. Virol., 77(16), 8801-8811. https://doi.org/10.1128/JVI.77.16.8801-8811.2003.
  6. Daikh, A.A. and Zenkour, A.M. (2020), "Bending of Functionally Graded Sandwich Nanoplates Resting on Pasternak Foundation under Different Boundary Conditions", J. Appl. Computat. Mech.
  7. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porositydependent homogenization scheme", Adv. Nano Res., Int. J., 7(2), 135-143. http://doi.org/10.12989/anr.2019.7.2.135.
  8. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., Int. J., 7(1), 39-49. http://doi.org/10.12989/anr.2019.7.1.039.
  9. Ferreira, V. (2013), "T1-mapping as a novel technique for myocardial tissue characterisation using cardiovascular magnetic resonance-from method development to clinical validation and application".
  10. FitzHugh, R. (1969), "Mathematical models of excitation and propagation in nerve", Biol. Eng., 1-85.
  11. Hussain, M. and Selmi, A. (2020), "Effect of Pasternak foundation: Structural modal identification for vibration of FG shell", Adv. Concrete Construct., Int. J., 9(6), 569-576. https://doi.org/10.12989/acc.2020.9.6.569.
  12. Jena, S.K., Chakraverty, S., Malikan, M. and Sedighi, H. (2020), "Implementation of Hermite-Ritz method and Navier's technique for vibration of functionally graded porous nanobeam embedded in Winkler-Pasternak elastic foundation using biHelmholtz nonlocal elasticity", J. Mech. Mater. Struct., 15(3), 405-434. https://doi.org/10.2140/jomms.2020.15.405.
  13. Lee, K., Lee, S.Y., Praveenkumar, R., Kim, B., Seo, J.Y., Jeon, S.G., Jeon, S.G., Na, J.G., Park, J.Y., Kim, D.M. and Oh, Y.-K. (2014), "Repeated use of stable magnetic flocculant for efficient harvest of oleaginous Chlorella sp", Bioresource Technol., 167, 284-290. https://doi.org/10.1016/j.biortech.2014.06.055.
  14. Liu, J., Zhang, X., Schmitter, S., Van de Moortele, P.F. and He, B. (2015), "Gradient-based electrical properties tomography (g EPT): A robust method for mapping electrical properties of biological tissues in vivo using magnetic resonance imaging", Magn. Reson. Med., 74(3), 634-646. https://doi.org/10.1002/mrm.25434.
  15. Malmivuo, J. and Plonsey, R. (1995), Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields, Oxford University Press, U.S.A.
  16. Miller, C.E. and Henriquez, C.S. (1990), "Finite element analysis of bioelectric phenomena", Crit. Rev. Biomed. Eng., 18(3), 207-233.
  17. Moon, P.H. and Spencer, D.E. (2013), Foundations of Electrodynamics, Courier Corporation.
  18. Nicholls, J. and Purves, D. (1970), "Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech", J. Physiol., 209(3), 647-667. https://doi.org/10.1113/jphysiol.1970.sp009184.
  19. Pavlovic, I.R., Pavlovic, R., Janevski, G., Despenic, N. and Pajkovic, V. (2020), "Dynamic behavior of two elastically connected NANOBEAMS under a white noise process", Facta Universitatis, Series: Mech. Eng., 18(2), 219-227. https://doi.org/10.22190/FUME190415008P.
  20. Plonsey, R. and Barr, R.C. (1984), "Current flow patterns in two-dimensional anisotropic bisyncytia with normal and extreme conductivities", Biophys. J., 45(3), 557-571. https://doi.org/10.1016/S0006-3495(84)84193-4.
  21. Plonsey, R. and Barr, R.C. (2007), Bioelectricity: A Quantitative Approach, Springer Science & Business Media.
  22. Popov, V. (2020), "Coefficients of restitution in normal adhesive impact between smooth and rough elastic bodies", Rep. Mech. Eng., 1(1), 103-109. https://doi.org/10.31181/rme200101103p.
  23. Riemann, B.L. and Lephart, S.M. (2002), "The sensorimotor system, part I: the physiologic basis of functional joint stability", J. Athletic Training, 37(1), 71.
  24. Roth, S., Newman, E., Pelcovitz, D., Van Der Kolk, B. and Mandel, F.S. (1997), "Complex PTSD in victims exposed to sexual and physical abuse: Results from the DSM-IV field trial for posttraumatic stress disorder", J. Traumatic Stress, 10(4), 539-555. https://doi.org/10.1023/A:1024837617768.
  25. Sadleir, R.J., Grant, S.C. and Woo, E.J. (2010), "Can high-field MREIT be used to directly detect neural activity? Theoretical considerations", Neuroimage, 52(1), 205-216. https://doi.org/10.1016/j.neuroimage.2010.04.005.
  26. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., Int. J., 7(4), 265-275. http://doi.org/10.12989/anr.2019.7.4.265.
  27. Schwartz, B.L. and Sadleir, R.J. (2015), "Analysis of bipolar external excitation of spherical tissue by spatially opposed current source and sink points", Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2299-2302, Milan, Italy, August. https://doi.org /10.1109/EMBC.2015.7318852.
  28. Schwartz, B.L., Chauhan, M. and Sadleir, R.J. (2018), "Analytic modeling of conductively anisotropic neural tissue", J. Appl. Phys., 124(6), 064701. https://doi.org/10.1063/1.5036659.
  29. Sedighi, H.M. and Sheikhanzadeh, A. (2017), "Static and dynamic pull-in instability of nano-beams resting on elastic foundation based on the nonlocal elasticity theory", Chinese J. Mech. Eng., 30(2), 385-397. https://doi.org/10.1007/s10033-017-0079-3.
  30. Sembulingam, K. and Sembulingam, P. (2012), Essentials of Medical Physiology, JP Medical Ltd.
  31. Seo, J.K. and Woo, E.J. (2011), "Magnetic resonance electrical impedance tomography (MREIT)", SIAM Rev., 53(1), 40-68. https://doi.org/10.1137/080742932.
  32. Sepulveda, N.G., Roth, B.J. and Wikswo Jr, J.P. (1989), "Current injection into a two-dimensional anisotropic bidomain", Biophys. J., 55(5), 987-999. https://doi.org/10.1016/S0006-3495(89)82897-8.
  33. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Sizedependent vibration analysis of laminated composite plates", Adv. Nano Res., Int. J., 7(5), 337-349. http://doi.org/10.12989/anr.2019.7.5.337.
  34. Sobie, E.A., Susil, R.C. and Tung, L. (1997), "A generalized activating function for predicting virtual electrodes in cardiac tissue", Biophys. J., 73(3), 1410-1423. https://doi.org/10.1016/S0006-3495(97)78173-6.
  35. Taj, M. and Zhang, J. (2012), "Analysis of vibrational behaviors of microtubules embedded within elastic medium by Pasternak model", Biochem. Bioph. Res. Co., 424(1), 89-93. https://doi.org/10.1016/j.bbrc.2012.06.072.
  36. Taj, M. and Zhang, J. (2014), "Analysis of wave propagation in orthotropic microtubules embedded within elastic medium by Pasternak model", J. Mech. Behav. Biomed. Mater., 30, 300-305. https://doi.org/10.1016/j.jmbbm.2013.11.011.
  37. Trayanova, N. (1990), "Electrical behavior of a skeletal muscle fiber in a volume conductor of finite extent", Biol. Cybernet., 63(2), 121-125. https://doi.org/10.1007/BF00203034.
  38. Trayanova, N.A., Roth, B.J. and Malden, L.J. (1993), "The response of a spherical heart to a uniform electric field: A bidomain analysis of cardiac stimulation", IEEE T. Bio-Med. Eng., 40(9), 899-908. https://doi.org/10.1109/10.245611.
  39. Weaver, J.C. (1993), "Electroporation: A general phenomenon for manipulating cells and tissues", J. Cell. Biochem., 51(4), 426-435. https://doi.org/10.1002/jcb.2400510407.
  40. Zador, A.M., Agmon-Snir, H. and Segev, I. (1995), "The morphoelectrotonic transform: A graphical approach to dendritic function", J. Neurosci., 15(3), 1669-1682. https://doi.org/10.1523/JNEUROSCI.15-03-01669.1995.