References
- An, N.H., Ryu, S.H., Chun, H.H. and Lee, I. (2014), "An experimental assessement of resistance reduction and wake modification of KVLCC model by using outer-layer vertical blades", Int. J. Nav. Archit. Ocean Eng., 6, 151-161. https://doi.org/10.2478/IJNAOE-2013-0169
- Barhoumi, M. and Storhaug, G. (2014), "Assessment of whipping and springing on a large container vessel", Int. J. Nav. Archit. Ocean Eng., 6, 442-458. https://doi.org/10.2478/IJNAOE-2013-0191
- Hong, S.Y. and Kim, B.W. (2014), "Experimental investigations of higher-order springing and whippingWILS project", Int. J. Nav. Archit. Ocean Eng., 6, 1160-1181. https://doi.org/10.2478/IJNAOE-2013-0237
- International Towing Tank Conference. (ITTC) (2011), Practical guidelines for ship CFD applications.
- Islam, H., Rahaman, M.M. and Akimoto, H. (2019), "Added Resistance Prediction of KVLCC2 in Oblique Waves", Am. J. Fluid Dynam., 9(1), 13-26.
- Kim, J.H. and Kim, Y. (2014), "Numerical analysis on springing and whipping using fully-coupled", Ocean Eng., 91, 28-50. https://doi.org/10.1016/j.oceaneng.2014.08.001
- Kim, J.H., Kim, Y. and Korobkin, A. (2014), "Comparison of fully coupled hydroelastic computation and segmented model test results for slamming and whipping loads", Int. J. Nav. Archit. Ocean Eng., 6, 1064-1081. https://doi.org/10.2478/IJNAOE-2013-0231
- Kim, M., Hizir, O., Turan, O. and Incecik, A. (2017), "Numerical studies on added resistance and motions of KVLCC2 in head seas for various ship speeds", Ocean Eng., 140, 466-476. https://doi.org/10.1016/j.oceaneng.2017.06.019
- Kim, Y. and Kim, J.H. (2016), "Benchmark study on motions and loads of a 6750-TEU containership", Ocean Eng., 119, 262-273. https://doi.org/10.1016/j.oceaneng.2016.04.015
- Lakshmynarayanana, P., Temarel, P. and Chen, Z. (2015), "Coupled Fluid-Structure Interaction to model Three-Dimentional Dynamic Behaviour of Ship in Waves", Proceedings of the 7th International Conference on Hydroelasticity in Marine Technology. Split, Croatia.
- Larsson, L. and Raven, H.C. (2010), Shio resistance and flow, In R.H. Larsson L, THE PRINCIPLES OF NAVAL ARCHITECTURE SERIES. The Society of Naval Architects and Marine Engineers, USA.
- Seng, S., Jensen, J.J. and Malenica, S. (2014), "Global hydroelastic model for springing and whipping based on a free-surface CFD code (OpenFOAM)", Int. J. Nav. Archit. Ocean Eng., 6, 1024-1040. https://doi.org/10.2478/IJNAOE-2013-0229
- Storhaug, G. (2014), "The measured contribution of whipping and springing on the fatigue and extreme loading of container vessels", Int. J. Nav. Archit. Ocean Eng., 6, 1096-1110. https://doi.org/10.2478/IJNAOE-2013-0233
- Tezdogan, T., Demirel, Y.K., Kellett, P., Khorasanchi, M., Incecik, A. and Turan, O. (2015), "Full-scale unsteady RANS CFD simulations of ship behaviour and performance in head seas due to slow steaming", Ocean Eng., 97, 186-206. https://doi.org/10.1016/j.oceaneng.2015.01.011
- Win, Y.N., Akamatsu, K., Stern, F., Wu, P.C., Okawa, H. and Toda, Y. (2016), RANS Simulation of KVLCC2 using Simple Body-Force Propeller Model With Rudder and Without Rudder.