DOI QR코드

DOI QR Code

A novel test method for the aerodynamic performance of wind turbine airfoil using wind generated by a moving vehicle

  • Li, Shengli (Zhengzhou University of Industrial Technology) ;
  • Liang, Jun (School of Civil Engineering, Zhengzhou University) ;
  • Guo, Pan (School of Civil Engineering, Zhengzhou University) ;
  • Wang, Xidong (School of Civil Engineering, Zhengzhou University) ;
  • Li, Panjie (School of Civil Engineering, Zhengzhou University)
  • 투고 : 2020.01.02
  • 심사 : 2021.05.11
  • 발행 : 2021.06.25

초록

Refer to wind turbine airfoil wind tunnel test and consider the characteristics of wind generated by a moving vehicle, a new test method for wind turbine airfoil aerodynamic performance is proposed in this paper. Because of the relativity of motion, the vehicle will generate a relative wind field in the process of motion. Thus, the aerodynamic performance of wind turbine airfoil can be investigated using a transiting test method. In this study, a transiting test method is systematically introduced, the processing method of test data is discussed in detail, and the influence of vehicle vibration and end plate on the test results is evaluated. Three independent repeated tests are conducted, and the influence of natural wind is analyzed to eliminate the instability effect. The feasibility of the proposed test method is then verified by comparing its results with the results of wind tunnel test.

키워드

과제정보

The authors are grateful for the financial support from the National Natural Science Foundation of China (51778587, 51808510), Natural Science Foundation of Henan Province of China (162300410255), Supported by Foundation for University Young Key Teacher by Henan Province (2017GGJS005), Outstanding Young Talent Research Fund of Zhengzhou University (1421322059) and Science and technology planning project of Transportation in Henan Province (2016Y2-2, 2018J3).

참고문헌

  1. Abdallah, I., Natarajan, A. and Sorensen, J.D. (2015), "Impact of uncertainty in airfoil characteristics on wind turbine extreme loads", Renew Energy., 75, 283-300. https://doi.org/10.1016/j.renene.2014.10.009.
  2. Altan, B.D., Kovan, V. and Altan, G. (2018), "Numerical and experimental analysis of a 3D printed Savonius rotor with builtin extension plate", Wind Struct., 27(1), 1-9. http://dx.doi.org/10.12989/was.2018.27.1.001.
  3. An, Y., Wang, C., Li, S. and Wang, D. (2016), "Galloping of steepled main cables in long-span suspension bridges during construction", Wind Struct., 23(6), 595-613. https://doi.org/10.12989/was.2016.23.6.595.
  4. Anyoji, M., Nose, K., Ida, S., Numata, D., Nagai, H. and Asai, K. (2010), Low Reynolds Number Airfoil Testing in a Mars Wind Tunnel.
  5. Bak, C., Gaunaa, M., Andersen, P.B., Buhl, T., Hansen, P. and Clemmensen, K. (2010), "Wind tunnel test on airfoil Riso-B1-18 with an Active Trailing Edge Flap", Wind Energy., 13(2-3), 207-219. https://doi.org/10.1002/we.369.
  6. Ball, N.G., Rawlins, C.B. and Renowden, J.D. (1992), "Wind tunnel errors in drag measurements of power conductors", J. Wind Eng. Ind. Aerod., 41(1-3), 847-857. https://doi.org/10.1016/0167-6105(92)90505-5.
  7. Bayati, I., Belloli, M., Bernini, L. and Zasso, A. (2017), "Aerodynamic design methodology for wind tunnel tests of wind turbine rotors", J. Wind Eng. Ind. Aerod., 167, 217-227. https://doi.org/10.1016/j.jweia.2017.05.004.
  8. Bianchini, A., Balduzzi, F., Rainbird, J.M., Peiro, J., Graham, J.M.R., Ferrara, G. and Ferrari, L. (2016), "An experimental and numerical assessment of airfoil polars for use in darrieus wind turbines - Part II: Post-stall data extrapolation methods", J. Eng. Gas Turbines Power., 138, 1-10. https://doi.org/10.1115/1.4031270.
  9. Blocken, B. and Toparlar, Y. (2015), "A following car influences cyclist drag: CFD simulations and wind tunnel measurements", J. Wind Eng. Ind. Aerod., 145, 178-186. https://doi.org/10.1016/j.jweia.2015.06.015
  10. Blocken, B., Toparlar, Y. and Andrianne, T. (2016), "Aerodynamic benefit for a cyclist by a following motorcycle", J Wind Eng. Ind. Aerod., 155, 1-10. https://doi.org/10.1016/j.jweia.2016.04.008
  11. Devinant, P., Laverne, T. and Hureau, J. (2002), "Experimental study of wind-turbine airfoil aerodynamics in high turbulence", J Wind Eng. Ind. Aerod., 90(6), 689-707. https://doi.org/10.1016/S0167-6105(02)00162-9
  12. Disotell, K.J., Nikoueeyan, P., Naughton, J.W. and Gregory, J.W. (2016), "Global surface pressure measurements of static and dynamic stall on a wind turbine airfoil at low Reynolds number", Exp Fluids., 57(5).
  13. Du, W., Zhao, Y., He, Y. and Liu, Y. (2016), "Design, analysis and test of a model turbine blade for a wave basin test of floating wind turbines", Renew Energy., 97, 414-421. https://doi.org/10.1016/j.renene.2016.06.008
  14. Elawady, A., Aboshosha, H. and El Damatty, A. (2018), "Aero-elastic response of transmission line system subjected to downburst wind: Validation of numerical model using experimental data", Wind Struct., 27(2SI), 71-88.
  15. Guo, P., Li, S., Wang, C., Hu, Y. and Wang, D. (2017), "Influence of catwalk design parameters on the galloping of constructing main cables in long-span suspension bridges", J. Vibroeng., 19(6), 4671-4684. https://doi.org/10.21595/jve.2017.18184
  16. Guo, P., Wang, D., Li, S., Liu, L. and Wang, X. (2019), "Transiting test method for galloping of iced conductor using wind generated by a moving vehicle", Wind Struct., 28(3), 155-170. https://doi.org/10.12989/WAS.2019.28.3.155
  17. Han, W., Kim, J. and Kim, B. (2018), "Study on correlation between wind turbine performance and ice accretion along a blade tip airfoil using CFD", J. Renew. Sustain. Energy., 10(2), 23306. https://doi.org/10.1063/1.5012802
  18. Heisel, M., Hong, J. and Guala, M. (2018), "The spectral signature of wind turbine wake meandering: A wind tunnel and field-scale study", Wind Energy., 21(9), 715-731. https://doi.org/10.1002/we.2189
  19. Holst, D., Bach, A.B., Nayeri, C.N., Paschereit, C.O. and Pechlivanoglou, G. (2016), Wake Analysis of a Finite Width Gurney Flap.
  20. Knight, J.J., Lucey, A.D. and Shaw, C.T. (2010), "Fluid-structure interaction of a two-dimensional membrane in a flow with a pressure gradient with application to convertible car roofs", J. Wind Eng. Ind. Aerod., 98(2), 65-72. https://doi.org/10.1016/j.jweia.2009.09.003
  21. Komuro, A., Takashima, K., Tanaka, N., Konno, K., Nonomura, T., Kaneko, T., Ando, A. and Asai, K. (2018), "Multiple control modes of nanosecond-pulse-driven plasma-actuator evaluated by forces, static pressure, and PIV measurements", Exp. Fluids., 59(8).
  22. Kuester, M.S., Brown, K., Meyers, T., Intaratep, N., Borgoltz, A. and Devenport, W.J. (2015), "Wind tunnel testing of airfoils for wind turbine applications", Wind Eng., 39(6), 651-660. https://doi.org/10.1260/0309-524X.39.6.651
  23. Larbi, L.O., Hadji, L., Meziane, M.A.A. and Bedia, E.A.A. (2018), "An analytical solution for free vibration of functionally graded beam using a simple first-order shear deformation theory", Wind Struct., 27(4), 247-254. https://doi.org/10.12989/was.2018.27.4.247
  24. Li, D., Guo, T., Li, Y., Hu, J., Zheng, Z., Li, Y., Di, Y., Hu, W. and Li, R. (2018), "Interaction between the atmospheric boundary layer and a standalone wind turbine in Gansu-Part I: Field measurement", Sci. China Phys., Mech. Astronomy., 61(9).
  25. Li, Q., Kamada, Y., Maeda, T., Murata, J. and Nishida, Y. (2016), "Effect of turbulent inflows on airfoil performance for a Horizontal Axis Wind Turbine at low Reynolds numbers (part I: Static pressure measurement)", Energy., 111, 701-712. https://doi.org/10.1016/j.energy.2016.06.021
  26. Li, Q., Kamada, Y., Maeda, T., Murata, J. and Nishida, Y. (2016), "Effect of turbulent inflows on airfoil performance for a Horizontal Axis Wind Turbine at low Reynolds numbers (Part II: Dynamic pressure measurement)", Energy., 112, 574-587. https://doi.org/10.1016/j.energy.2016.06.126
  27. Li, Q., Maeda, T., Kamada, Y. and Hiromori, Y. (2018), "Investigation of wake characteristic of a 30 kW rated power Horizontal Axis Wind Turbine with wake model and field measurement", Appl. Energy., 225, 1190-1204. https://doi.org/10.1016/j.apenergy.2018.05.022
  28. Li, Q.A., Maeda, T., Kamada, Y. and Mori, N. (2017), "Investigation of wake effects on a Horizontal Axis Wind Turbine in field experiments (Part I: Horizontal axis direction)", Energy., 134 482-492. https://doi.org/10.1016/j.energy.2017.05.187
  29. Li, S., An, Y., Wang, C. and Wang, D. (2017), "Experimental and numerical studies on galloping of the flat-topped main cables for the long span suspension bridge during construction", J. Wind Eng. Ind. Aerod., 163, 24-32. https://doi.org/10.1016/j.jweia.2017.01.012
  30. Li, S., Liang, J., Zheng, S. and Jiang, N. (2019), "A novel test method for aerodynamic coefficient measurements of structures using wind generated by a moving vehicle", Exp. Techniques.
  31. Li, S.L., Liu, L.L., Wu, H., Jiang, N., Zheng, S.Y. and Guo, P. (2019), "New test method of wind pressure coefficient based on CAARC standard model determined using vehicle driving wind", Exp. Techniques.
  32. Li, X., Yang, K., Bai, J. and Xu, J. (2016), "A new optimization approach to improve the overall performance of thick wind turbine airfoils", Energy., 116, 202-213. https://doi.org/10.1016/j.energy.2016.09.108
  33. Liu, M., Li, Q.S., Huang, S.H., Shi, F. and Chen, F. (2018), "Evaluation of wind effects on a large span retractable roof stadium by wind tunnel experiment and numerical simulation", J. Wind Eng. Ind. Aerod., 179, 39-57. https://doi.org/10.1016/j.jweia.2018.05.014
  34. Parker, A.G. (1976), "Force and pressure measurements on an airfoil oscillating through stall", J. Aircraft., 13.
  35. Picard, A., Davis, R.S., Glaser, M. and Fujii, K. (2008), "Revised formula for the density of moist air (CIPM-2007)", Metrologia., 45(2), 149. https://doi.org/10.1088/0026-1394/45/2/004
  36. Rainbird, J., Peiro, J. and Graham, J.M. (2017), "Poststall Airfoil Performance and Vertical-Axis Wind Turbines", J. Propul. Power., 33(5), 1053-1062. https://doi.org/10.2514/1.B35896
  37. Rehman, S., Alam, M., Alhems, L. and Rafique, M. (2018), "Horizontal axis wind turbine blade design methodologies for efficiency enhancement-A review", Energies., 11(3), 506. https://doi.org/10.3390/en11030506
  38. Rice, T.T., Taylor, K. and Amitay, M. (2018), "Quantification of the S817 airfoil aerodynamic properties and their control using synthetic jet actuators", Wind Energy., 21(10), 823-836. https://doi.org/10.1002/we.2197
  39. Selig, M.S. and McGranahan, B.D. (2004), "Wind tunnel aerodynamic tests of six airfoils for use on small wind turbines", J. Sol. Energy-T Asme., 126(4), 986-1001. https://doi.org/10.1115/1.1793208
  40. Shen, X., Avital, E., Paul, G., Rezaienia, M.A., Wen, P. and Korakianitis, T. (2016), "Experimental study of surface curvature effects on aerodynamic performance of a low Reynolds number airfoil for use in small wind turbines", J. Renew. Sustain. Energy., 8(5), 53303. https://doi.org/10.1063/1.4963236
  41. Sheng, W., Galbraith, R.A.M. and Coton, F.N. (2009), "On the S809 airfoil's unsteady aerodynamic characteristics", Wind Energy., 12(8), 752-767. https://doi.org/10.1002/we.331
  42. Shengli, Li, R.W.D.W. (2019), "Effect of end plates on transiting test for measuring the aerodynamic coefficient of structures using wind generated by a moving vehicle", J. Wind Eng. Ind. Aerod., 190, 273-286. https://doi.org/10.1016/j.jweia.2019.05.009
  43. Stringer, D.B., Hartman, P., Bunner, D.W. and Fisch, M.R. (2018), "A new 360° airfoil model for predicting airfoil thrust potential in vertical-axis wind turbine designs", J. Renew Sustain Energy., 10(1), 13304. https://doi.org/10.1063/1.5011207
  44. Wang, G., Zhang, L. and Shen, W.Z. (2018), "LES simulation and experimental validation of the unsteady aerodynamics of blunt wind turbine airfoils", Energy., 158, 911-923. https://doi.org/10.1016/j.energy.2018.06.093
  45. Wang, T., Wang, L., Zhong, W., Xu, B. and Chen, L. (2012), "Large-scale wind turbine blade design and aerodynamic analysis", Chinese Sci. Bull., 57(5), 466-472. https://doi.org/10.1007/s11434-011-4856-6
  46. Wang, Y., Xia, H., Guo, W., Zhang, N. and Wang, S. (2018), "Numerical analysis of wind field induced by moving train on HSR bridge subjected to crosswind", Wind Struct., 27(1), 29-40. https://doi.org/10.12989/WAS.2018.27.1.029
  47. Yan, Z., Zhong, Y., Cheng, X., McIntyre, R.P. and Savory, E. (2018), "A numerical study of a confined turbulent wall jet with an external stream", Wind Struct., 27(2SI), 101-109.
  48. Zhang, L., Li, X. and Yang, K. (2016), "Experimental and computational aerodynamic investigations of very thick wind turbine airfoils", J. Renew. Sustain. Energy., 8(1), 13306. https://doi.org/10.1063/1.4942541
  49. Zhang, L., Li, X., Yang, K. and Xue, D. (2016), "Effects of vortex generators on aerodynamic performance of thick wind turbine airfoils", J. Wind Eng. Ind. Aerod., 156, 84-92. https://doi.org/10.1016/j.jweia.2016.07.013
  50. Zhang, X., Wang, G., Zhang, M., Liu, H. and Li, W. (2017), "Numerical study of the aerodynamic performance of blunt trailing-edge airfoil considering the sensitive roughness height", Int. J. Hydrog. Enenerg., 42(29), 18252-18262. https://doi.org/10.1016/j.ijhydene.2017.04.158
  51. Zhang, Y., Van Zuijlen, A. and Van Bussel, G. (2014), "Comparison of CFD simulations to non-rotating MEXICO blades experiment in the LTT wind tunnel of TUDelft", In Journal of Physics: Conference Series, 524(1), 012013, June. https://doi.org/10.1088/1742-6596/524/1/012013