DOI QR코드

DOI QR Code

The Influencing Factors of SME's Acceptance Intention to Advance Smart Factory

중소기업의 스마트팩토리 고도화 수용의도에 미치는 영향요인

  • Chung, Sang-Il (Dept. of Convergence Industry, Seoul Venture University) ;
  • Park, Hyeon-Suk (Dept. of Convergence Industry, Seoul Venture University)
  • 정상일 (서울벤처대학원대학교 융합산업학과) ;
  • 박현숙 (서울벤처대학원대학교 융합산업학과)
  • Received : 2021.05.04
  • Accepted : 2021.06.20
  • Published : 2021.06.28

Abstract

This study analyzed the factors that influence the domestic SMEs that have introduced smart factories on their intention to accept at a higher level for qualitative advancement. 375 copies collected through an online survey were analyzed using SPSS and AMOS with UTAUT and the extended two-stage information system continuous model. Performance expectancy, effort expectancy, social influence, and facilitating conditions have a statistically significant effect on user satisfaction and user satisfaction and CEO's will have an effect on the intention to accept the advancement. However, the suppliers' technology didn't have a direct effect on the advancement acceptance intention and user satisfaction has a mediating effect between performance expectancy, effort expectancy, social influence, facilitating conditions and the advancement acceptance intention. SME's advancement for smart factory, it is important to improve the satisfaction level and the CEO's will to become smart.

본 연구는 스마트팩토리를 도입한 국내 중소제조기업이 질적 고도화를 위해 현재 대비 상위단계의 스마트팩토리 고도화 수용의도에 영향을 미치는 요인을 분석하고자 한다. 이를 위하여 스마트팩토리를 도입한 중소기업을 대상으로 통합기술수용이론과 확장된 2단계 정보시스템 지속사용모델을 이용하여 온라인 설문조사를 통해 수집된 375부를 SPSS와 AMOS를 활용하여 실증적으로 분석하였다. 연구결과 성과기대, 노력기대, 사회적 영향, 촉진조건은 사용자 만족도에 통계적으로 유의한 영향이 있었으며, 사용자 만족도와 경영자의 의지는 고도화 수용의도에 영향을 미치는 것으로 나타났다. 다만 공급사의 기술력은 고도화 수용의도에 직접적인 영향이 없는 것으로 나타났으며 스마트팩토리 사용자의 만족도는 성과기대, 노력기대, 사회적 영향, 촉진조건과 고도화 수용의도 간에 매개효과를 가지는 것을 확인하였다. 향후 국내 중소제조기업의 스마트팩토리 고도화를 위해서는 사용단계에서의 만족도 향상과 경영자의 스마트화 의지를 지속 향상시키는 노력이 중요하다고 판단된다.

Keywords

References

  1. Korea Trade Investment Promotion Agency. (2017). 4th Industrial Revolution Part 2 : Manufacturing Innovation and Smart Factory. Special Field Report. https://news.kotra.or.kr
  2. K. Schwab. (2016) The Fourth Industrial Revolution :What it means, how to respond. World Economic Forum. https://www.weforum.org/agenda/2016/01
  3. D. H. Choi. (2019). Manage as a Smart Factory. Seoul :Huckleberry Books.
  4. J. P. Park. (2017). Analysis on Success Cases of Smart Factory in Korea: Leveraging from Large, Medium, and Small Size Enterprises. Journal of Digital Convergence Research 15(5), 107-115. DOI: 10.14400/JDC.2017.15.5.107
  5. Y. K. Jang. (2019). A Study on How to Use Smart Factory in SME Innovation. Journal of SME Policy 4(1), 3-35. https://www.mss.go.kr
  6. J. Y. Chu & D. H. Lee. (2018). Effects of Smart Factory's Energy Management System Acceptance and Diffusion Factors on Employees' Resistance to Innovation and Work Performance. Journal of Digital Convergence Research 16(1), 103-116. DOI: 10.14400/JDC.2018.16.1.103
  7. J. W. Lim, D. H. Cho, S. Y. Lee, H. J . Park & J. W. Park. (2017). A Study on Smart Factory-Based Manufacturing Process Innovation. Korean Journal of Business Administration 30, 1,609-1,630. DOI: 10.18032/kaaba.2017.30.9.1609
  8. S. O. Jin & Y. W. Seo. (2019). The Effect of Production Automation and Operation/Resource Management System, Which are Key Factors of Smart Factory in SMEs, on Management Performance. Korean Society for Technology Innovation Academic Conference. 178-197.
  9. D. A. Chekired, L. Khoukhi & H. T. Mouftah. (2018). Industrial IoT Data Scheduling Based on Hierarchical Fog Computing: A key for Enabling Smart Factory. IEEE Transactions on Industrial Informatics 14(10), 4590-4602. DOI: 10.1109/TII.2018.2843802
  10. P. K. Illa & N. Padhl. (2019). Practical Guide to Smart Factory Transition Using IoT, Big Data and Edge Analytics. Digital Object Identifier. 6, 55162-55170. DOI: 10.1109/ACCESS.2018.2872799
  11. J. Wan, J. Yang, Z. Wang & Q. Hua. (2018). Artificial Intelligence for Cloud-assisted Smart Factory. IEEE Access 6, 55419-55430. DOI: 10.1109/ACCESS.2018.2871724
  12. A. Mohdhar & K. Shaalan. (2021). The Future of E-Commerce Systems: 2030 and Beyond. Recent Advances in Technology Acceptance Models and Theories.. 311-330. DOI: 10.1007/978-3-030-64987-6_18
  13. Y. H. Yoon, J. Lee, E. B. Lee, B. M. Moon, J. H. Seo, J. C. Lee, T.W. Chang & S. I. Sung. (2020). Policy Suggestions on the Smart Factory Based on the Survey Results from Smart Factory Suppliers. Korean Society for Quality Management 48(1), 1-11. DOI: 10.7469/JKSQM.2020.48.1.1
  14. T. W. Chang, S. I. Sung & J. C. Lee. (2019). Survey Analysis on Small and Medium-Sized Suppliers of Smart Factory and Improvement Plan for Them. Entrue Journal of Information Technology 17(1), 77-88.
  15. Korea Smart Manufacturing Office. (2021). Smart Factory Introduction. https://www.smart-factory.kr
  16. Ministry of SMEs and Startups. (2019. May). Smart Factory Support Project Performance Analysis Research. https://www.mss.go.kr
  17. Ministry of SMEs and Startups. (2020. Nov.). Intelligent Factory, Policy Shift from Quantitative Distribution to Qualitative Advancement. The 117th National Pending Review and Coordination Meeting. https://www.mss.go.kr
  18. V. Venkatesh, M. G. Morris, G. B. Davis & F. D. Davis. (2003. September). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. DOI: 10.2307/30036540
  19. E. G. Jeong & H. S. Park. (2017). An Empirical Study on the User Acceptance of Internet Primary Bank Based on UTAUT2. The e-Business Studies 18(3), 75-95. DOI: 10.20462/TeBS.2017.06.18.3.75
  20. S. Rahi, M. M. O. Mansour, M. Alghizzawi & F. M. Alnaser. (2019). Integration of UTAUT Model in Internet Banking Adoption Context: The Mediating Role of Performance Expectancy and Effort Expectancy. Journal of Research in Interactive Marketing 13(3), 411-435. DOI: 10.1108/JRIM-02-2018-0032
  21. K. O. Kim. (2017). Factors Affecting IoT Adoption by SMEs and Policy Implications. Legislation and Policy 9(3), 341-346. DOI: 10.22809/nars.2017.9.3.014
  22. I. Rosnidah, A. Muna, A. M. Musyaffi & N. F. Siregar. (2019). Critical Factor of Mobile Payment Acceptance in Millenial Generation: Study on the UTAUT model. Advances in Social Science, Education and Humanities Research 306, 123-127. DOI : 10.2991/isseh-18.2019.30
  23. J. W. Kim, H. I. Jo. & B. G. Lee. (2019). The Study on the Factors Influencing on the Behavioral Intention of Chatbot Service for the Financial Sector: Focusing on the UTAUT Model. Journal of Digital Contents Society, 20(1), 41-50. DOI : 10.9728/dcs.2019.20.1.41
  24. J. H. Kim & K. S. S. Lee. (2020). Conceptual Model to Predict Filipino Teachers' Adoption of ICT-based Instruction in Cclass: Using the UTAUT Model. Asi Pacific Journal of Education, 1-15. DOI : 10.1080/02188791.2020.1776213
  25. W. Zhang. (2020). A Study on the User Acceptance Model of Artificial Intelligence Music Based on UTAUT. Journal of The Korea Society of Computer and Information 25(6), 25-33. DOI: 10.9708/jksci.2020.25.06.025
  26. H. R. Mohammad & F. A. Forouharfar (2020). A Contextualized Study of The Usage of The Internet of Things (IoTs) in Smart Farming in a Typical Middle Eastern Country within The Context of Unified Theory of Acceptance and Use of Technology Model (UTAUT). Technology in Society, 63, 1-29. DOI: 10.1016/j.techsoc.2020.101415
  27. W. B. Arfi, I. B. Nasr, T. Khvatova & Y. B. Zaied (2021). Understanding Acceptance of eHealthcare by IoT Natives and IoT Immigrants : An Integrated Model of UTAUT, Perceived Risk and Financial Cost. Technological Forecasting and Social Change 163, 1-11. DOI: 10.1016/j.techfore.2020.120437
  28. J. R. Kim & S. J. Lee. (2020). Factors Affecting Adoption of Smart Factory Technology. Journal of Information Technology Applications Management 27(1), 75-95. DOI: 10.21219/jitam.2020.27.1.075
  29. Y. G. Lee, C. K. Park & Y. B. Seo. (2020). A Study on the Determinants of Smart Factories' Acceptance of Small and Medium-Sized Enterprises : Focusing on the Unified Technology Acceptance Model(UTAUT). Corporate Management and Research 27(5), 157-182. https://www.earticle.net/Article/A383817
  30. V. Venkatesh, J. Y. L. Thong, F. K. Y. Chan, P. J. H. Hu & S. A. Brown. (2011). Extending the Two-stage Information Systems Continuance Model: Incorporating UTAUT Predictors and the Role of Context Info Systems J. 21, 527-555. DOI : 10.1111/j.1365-2575.2011.00373.x
  31. A. Bhattacherjee. (2001). Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Quarterly, 25(3), 351-370. DOI: 10.2307/3250921
  32. A. Bhattacherjee & G. Premkumar. (2004). Understanding Changes in Belief and Attitude toward Information Technology Usage: A Theoretical Model and Longitudinal Test. MIS Quarterly,28(2),229-254. DOI: 10.2307/25148634
  33. R. L. Oliver. (1980). A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions. Journal of Marketing Research,17,460-469. DOI: 10.1177/002224378001700405
  34. J. Y. L. Thong, C.S. Yap & K. S. Raman. (1996) Top Management Support, External Expertise and Information Systems Implementation in Small Businesses. Information Systems Research, 7(2), 248-267. DOI : 10.1287/isre.7.2.248
  35. T. E. Choi, J. Y. Ko & H. M. Jang. (2020). Factors Affecting the Marine Equipment Suppliers' Acceptance and Adoption of Smart Factories -An Empirical Approach. Logistics Research, 28(5), 1-10. DOI : 10.15735/kls.2020.28.5.001
  36. Y. H. Choi & S. H. Choi. (2017). A Study on the Factors Influencing the Competitiveness of Small and Medium Companies Applied with Smart Factory System. Information Systems Review, 19(2), 95-113. DOI : 10.14329/isr.2017.19.2.095
  37. S. M. Kim. & Y. Y. You. (2020). The Effect of Corporate Competency on Smart Factory Acceptance Intention and Management Performance -Moderating Effect of Regional Characteristics. Journal of Digital Convergence 18(9),125-133. DOI: 10.14400/JDC.2020.18.9.125
  38. J. H. Cho. & W. S. Shin. (2019). Developing a Framework for Assessing Smart Factory Readiness of SMEs and Case Study. Journal of the Korean Society for Quality Management, 47(1), 1-15. DOI: 10.7469/JKSQM.2019.47.1.1
  39. H. J. Park, W. J. Shim & J. Y. Lee. (2018). Analysis on Efficiency and Productivity of Smart Factory Industry Using DEA and Malmquist : Chiefly on System and Application Software Publishing. Journal of Industrial Innovation, 34, 101-130. DOI:10.22793/indinn.2018.34.4.005
  40. S. N. Oh, W. C. Park, M.C. Riew & M. K. Lee. (2018). A Case Study of the Construction of Smart Factory in a Small Quantity Batch Production System: Focused on IDIS Company. Journal of The Korean Society for Quality Management,. 46(1), 11-26. DOI: 10.7469/JKSQM.2018.46.1.011
  41. H. G. Park. (2020). Request for Participation in the Joint Korea-German Online Forum for Preoccupying Smart Manufacturing Standards. Head of Korea Smart Manufacturing Office. Seoul. http://www.epnc.co.kr
  42. Y. J. Joo & D. S. Kim. (2017). A Study of Satisfaction and Intention to Use MOOC Based on UTAUT2 in Korea. Journal of Lifelong Learning Society, 13(1), 185-207. UCI : G704-SER000015054.2017.13.1.004 https://doi.org/10.26857/JLLS.2017.02.13.1.185
  43. E. Maillet, L. Mathieu & C. Sicotte. (2015). Modeling Factors Explaining the Acceptance, Actual Use and Satisfaction of Nurses Using an Electronic Patient Record in Acute Care Settings: An extension of the UTAUT. International Journal of Medical Informatics, 84, 36-47. DOI: 10.1016/j.ijmedinf.2014.09.004
  44. J. Y. Na. (2019). A Study on the Intention of Using VR Games : Focusing on Technology Acceptance Model(TAM). Journal of the Korean Game Society, 19(3), 53-64. DOI: 10.7583/JKGS.2019.19.3.53
  45. J. J. Song. (2015). SPSS/AMOS Statistical Analysis Method Required for Thesis Writing. Paju : 21st Century Book.
  46. J. P. Woo. (2012). Structural Equation Model Concept and Understanding. Seoul : Hannarae Publishing Co.