References
- Akgoz, B. and Civalek, O . (2015), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226(7), 2277-2294. https://doi.org/10.1007/s00707-015-1308-4.
- Akgoz, B. and Civalek, O . (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.
- Alibeigloo, A. and Liew, K.M. (2014), "Free vibration analysis of sandwich cylindrical panel with functionally graded core using three-dimensional theory of elasticity", Compos. Struct., 113, 23-30. https://doi.org/10.1016/j.compstruct.2014.03.004.
- Alibeigloo, A. and Rajaee Piteh Noee, A. (2017), "Static and free vibration analysis of sandwich cylindrical shell based on theory of elasticity and using DQM", Acta Mechanica, 228(12), 4123-4140. https://doi.org/10.1007/s00707-017-1914-4.
- Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.
- Brischetto, S. (2016), "Curvature approximation effects in the free vibration analysis of functionally graded shells", Int. J. Appl. Mech., 8(6), 1650079. https://doi.org/10.1142/s1758825116500794.
- Brischetto, S. (2017), "Exponential matrix method for the solution of exact 3D equilibrium equations for free vibrations of functionally graded plates and shells", J. Sandw. Struct. Mater., 21(1), 77-114. https://doi.org/10.1177/1099636216686127.
- Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B: Eng., 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
- Chen, H., Wang, A., Hao, Y. and Zhang, W. (2017), "Free vibration of FG sandwich doubly-curved shallow shell based on a new shear deformation theory with stretching effects", Compos. Struct., 179, 50-60. https://doi.org/10.1016/j.compstruct.2017.07.032.
- Civalek, O . (2009), "Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method", Appl. Math. Model., 33(10), 3825-3835. https://doi.org/10.1016/j.apm.2008.12.019.
- Civalek, O . and Acar, M.H. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", Int. J. Press. Ves. Pip., 84(9), 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001.
- Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018), "Modal analysis of FG sandwich doubly curved shell structure", Struct. Eng. Mech., 68(6), 721-733. https://doi.org/10.12989/SEM.2018.68.6.721.
- Demir, C . and Civalek, O . (2017a), "A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix", Compos. Struct., 168, 872-884. https://doi.org/10.1016/j.compstruct.2017.02.091.
- Demir, C . and Civalek, O . (2017b), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016.
- Dong, D.T. and Van Dung, D. (2017), "A third-order shear deformation theory for nonlinear vibration analysis of stiffened functionally graded material sandwich doubly curved shallow shells with four material models", J. Sandw. Struct. Mater., 21(4), 1316-1356. https://doi.org/10.1177/1099636217715609.
- Fantuzzi, N., Brischetto, S., Tornabene, F. and Viola, E. (2016), "2D and 3D shell models for the free vibration investigation of functionally graded cylindrical and spherical panels", Compos. Struct., 154, 573-590. https://doi.org/10.1016/j.compstruct.2016.07.076.
- Fares, M.E., Elmarghany, M.K., Atta, D. and Salem, M.G. (2018), "Bending and free vibration of multilayered functionally graded doubly curved shells by an improved layerwise theory", Compos. Part B: Eng., 154, 272-284. https://doi.org/10.1016/j.compositesb.2018.07.038.
- Fazzolari, F.A. and Carrera, E. (2014), "Refined hierarchical kinematics quasi-3D Ritz models for free vibration analysis of doubly curved FGM shells and sandwich shells with FGM core", J. Sound Vib., 333(5), 1485-1508. https://doi.org/10.1016/j.jsv.2013.10.030.
- Ghassabi, M., Talebitooti, R. and Zarastvand, M.R. (2019), "State vector computational technique for three-dimensional acoustic sound propagation through doubly curved thick structure." , Comput. Meth. Appl. Mech. Eng. , 352, 324-344. https://doi.org/10.1016/j.cma.2019.04.011.
- Ghassabi, M., Zarastvand, M.R. and Talebitooti, R. (2020), "Investigation of state vector computational solution on modeling of wave propagation through functionally graded nanocomposite doubly curved thick structures", Eng. Comput., 36(4), 1417-1433. https://doi.org/10.1007/s00366-019-00773-6.
- Gohari, H.D., Zarastvand, M. and Talebitooti, R. (2020) "Acoustic performance prediction of a multilayered finite cylinder equipped with porous foam media", J. Vib. Control, 26(11-12), 899-912. https://doi.org/10.1177/1077546319890025.
- Hadji, L., Ait Atmane, H., Tounsi, A. and Adda Bedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four variable refined plate theory", Appl. Math. Mech., 32, 925-942. https://doi.org/10.1007/s10483-011-1470-9.
- Hao, Y., Li, Z., Zhang, W., Li, S. and Yao, M. (2018), "Vibration of functionally graded sandwich doubly curved shells using improved shear deformation theory", Sci. Chin. Technol. Sci., 61(6), 791-808. https://doi.org/10.1007/s11431-016-9097-7.
- Jin, G., Shi, S., Su, Z., Li, S. and Liu, Z. (2015), "A modified Fourier-Ritz approach for free vibration analysis of laminated functionally graded shallow shells with general boundary conditions", Int. J. Mech. Sci., 93, 256-269. https://doi.org/10.1016/j.ijmecsci.2015.02.006.
- Kamarian, S., Sadighi, M., Shakeri, M. and Yas, M.H. (2014), "Free vibration response of sandwich cylindrical shells with functionally graded material face sheets resting on Pasternak foundation", J. Sandw. Struct. Mater., 16(5), 511-533. https://doi.org/10.1177/1099636214541573.
- Khayat, M., Dehghan, S.M., Najafgholipour, M.A. and Baghlani, A. (2018), "Free vibration analysis of functionally graded cylindrical shells with different shell theories using semianalytical method", Steel Compos. Struct., 28(6), 735-748. https://doi.org/10.12989/SCS.2018.28.6.735.
- Li, Q., Iu, V.P. and Kou, K.P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vib., 311, 498-515. https://doi.org/10.1016/j.jsv.2007.09.018.
- Liu, B., Ferreira, A.J.M., Xing, Y.F. and Neves, A.M.A. (2016), "Analysis of functionally graded sandwich and laminated shells using a layerwise theory and a differential quadrature finite element method", Compos. Struct., 136, 546-553. https://doi.org/10.1016/j.compstruct.2015.10.044.
- Marur, P.R. (1999), "Fracture behaviour of functionally graded materials", PhD Thesis, Auburn University, Alabama.
- Mercan, K., Demir, C . and Civalek, O . (2016), "Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique", Curv. Layer. Struct., 3(1), 82-90. https://doi.org/10.1515/cls-2016-0007.
- Monge, J.C., Mantari, J.L., Charca, S. and Vladimir, N. (2018), "An axiomatic/asymptotic evaluation of the best theories for free vibration of laminated and sandwich shells using non-polynomial functions", Eng. Struct., 172, 1011-1024. https://doi.org/10.1016/j.engstruct.2018.06.020.
- Nath, J.K. and Das, T. (2017), "Static and free vibration analysis of multilayered functionally graded shells and plates using an efficient zigzag theory", Mech. Adv. Mater. Struct., 26(9), 770-788. https://doi.org/10.1080/15376494.2017.1410915.
- Pandey, S. and Pradyumna, S. (2015), "A layerwise finite element formulation for free vibration analysis of functionally graded sandwich shells", Compos. Struct., 133, 438-450. https://doi.org/10.1016/j.compstruct.2015.07.087.
- Punera, D. and Kant, T. (2019), "A critical review of stress and vibration analyses of functionally graded shell structures", Compos. Struct., 210, 787-809. https://doi.org/10.1016/j.compstruct.2018.11.084.
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC Press.
- Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017a), "A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate", Steel Compos. Struct., 25(4), 389-401. https://doi.org/10.12989/scs.2017.25.4.389.
- Setoodeh, A.R., Shojaee, M. and Malekzadeh, P. (2019), "Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core", Compos. Part B: Eng., 165, 798-822. https://doi.org/10.1016/j.compositesb.2019.01.022.
- Shahmohammadi, M.A., Azhari, M. and Saadatpour, M.M. (2020), "Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method", Steel Compos. Struct., 34(3), 361-376. https://doi.org/10.12989/scs.2020.34.3.361.
- Talebitooti, R. and Zarastvand, M.R. (2018a), "Vibroacoustic behavior of orthotropic aerospace composite structure in the subsonic flow considering the third order shear deformation theory", Aerosp. Sci. Technol., 75, 227-236. https://doi.org/10.1016/j.ast.2018.01.011.
- Talebitooti, R., Gohari, H.D. and Zarastvand, M.R. (2017), "Multi objective optimization of sound transmission across laminated composite cylindrical shell lined with porous core investigating Non-dominated Sorting Genetic Algorithm", Aerosp. Sci. Technol., 69, 269-280. https://doi.org/10.1016/j.ast.2017.06.008.
- Talebitooti, R., Gohari, H.D., Zarastvand, M.R. and Loghmani, A. (2019a), "A robust optimum controller for suppressing radiated sound from an intelligent cylinder based on sliding mode method considering piezoelectric uncertainties.", J. Intel. Mater. Syst. Struct., 30(20), 3066-3079. https://doi.org/10.1177/1045389X19873412.
- Talebitooti, R., Zarastvand, M. and Gohari, H.D. (2019b), "Multiobjective optimization approach on diffuse sound transmission through poroelastic composite sandwich structure", J. Sandw. Struct. Mater., 1099636219854748. https://doi.org/10.1177/1099636219854748.
- Talebitooti, R., Zarastvand, M.R. and Gheibi, M.R. (2016), "Acoustic transmission through laminated composite cylindrical shell employing third order shear deformation theory in the presence of subsonic flow", Compos. Struct., 157, 95-110. https://doi.org/10.1016/j.compstruct.2016.08.008.
- Talebitooti, R., Zarastvand, M.R. and Gohari, H.D. (2018b), "Investigation of power transmission across laminated composite doubly curved shell in the presence of external flow considering shear deformation shallow shell theory", J. Vib. Control, 24(19), 4492-4504. https://doi.org/10.1177/1077546317727655.
- Talebitooti, R., Zarastvand, M.R. and Gohari, H.D. (2018c), "The influence of boundaries on sound insulation of the multi-layered aerospace poroelastic composite structure", Aerosp. Sci. Technol., 80, 452-471. https://doi.org/10.1016/j.ast.2018.07.030.
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories", Compos. Part B: Eng., 67, 490-509. https://doi.org/10.1016/j.compositesb.2014.08.012.
- Tornabene, F., Fantuzzi, N., Bacciocchi, M., Viola, E. and Reddy, J. (2017), "A numerical investigation on the natural frequencies of FGM sandwich shells with variable thickness by the local generalized differential quadrature method", Appl. Sci., 7(2), 131. https://doi.org/10.3390/app7020131.
- Wang, Q., Cui, X., Qin, B., Liang, Q. and Tang, J. (2017), "A semi-analytical method for vibration analysis of functionally graded (FG) sandwich doubly-curved panels and shells of revolution", Int. J. Mech. Sci., 134, 479-499. https://doi.org/10.1016/j.ijmecsci.2017.10.036.
- Ye, T., Jin, G. and Su, Z. (2014), "Three-dimensional vibration analysis of functionally graded sandwich deep open spherical and cylindrical shells with general restraints", J. Vib. Control, 22(15), 3326-3354. https://doi.org/10.1177/1077546314553608.
- Zarastvand, M.R., Ghassabi, M. and Talebitooti, R. (2019), "Acoustic insulation characteristics of shell structures: A review", Arch. Comput. Meth. Eng., 1-19. https://doi.org/10.1007/s11831-019-09387-z.