References
- Aghaei, M., Forouzan, M.R., Nikforouz, M. and Shahabi, E. (2015), "A study on different failure criteria to predict damage in glass/polyester composite beams under low velocity impact", Steel Compos. Struct., 18(5), 1291-1303. https://doi.org/10.12989/scs.2015.18.5.1291.
- Akbas, S.D. (2019), "Nonlinear behavior of fiber reinforced cracked composite beams", Steel Compos. Struct., 30(4), 327-336. https://doi.org/10.12989/scs.2019.30.4.327.
- Al-Fasih, M.Y., Kueh, A.B.H., Abo Sabah, S.H. and Yahya, M.Y. (2018), "Tow waviness and anisotropy effects on Mode II fracture of triaxially woven composite", Steel Compos. Struct., 26(2), 241-253. https://doi.org/10.12989/scs.2018.26.2.241.
- Altunisik, A.C., Gunaydin, M., Sevim, B. and Adanur, S. (2017), "System identification of arch dam model strengthened with CFRP composite materials", Steel Compos. Struct., 25(2), 231-244. https://doi.org/10.12989/scs.2017.25.2.231.
- Anaraki, A.G. and Fakoor, M. (2010), "General mixed mode I/II fracture criterion for wood considering T-stress effects", Mater. Design, 31(9), 4461-4469. https://doi.org/10.1016/j.matdes.2010.04.055.
- Anaraki, A.G. and Fakoor, M. (2011), "A new mixed-mode fracture criterion for orthotropic materials, based on strength properties", J. Strain Anal. Eng., 46(1), 33-44. https://doi.org/10.1243/03093247JSA667.
- Ataabadi, K., Ziaei-Rad, S. and Hosseini-Toudeshky, H. (2012), "Compression failure and fiber-kinking modeling of laminated composites", Steel Compos. Struct., 12(1), 53-72. http://dx.doi.org/10.12989/scs.2011.12.1.053.
- Berto, F. (2014), "A brief review of some local approaches for the failure assessment of brittle and quasi-brittle materials", Adv. Mater. Sci. Eng., (2014). https://doi.org/10.1155/2014/930679.
- Chen, S., Shi, X. and Qiu, Z. (2011), "Shear bond failure in composite slabs-a detailed experimental study", Steel Compos. Struct., 11(3), 233-250. http://dx.doi.org/10.12989/scs.2011.11.3.233.
- D'Angela, D., Ercolino, M., Bellini, C., Di Cocco, V. and Iacoviello, F. (2020), "Characterisation of the damaging micromechanisms in a pearlitic ductile cast iron and damage assessment by acoustic emission testing", Fatigue Fract. Eng. M., 43(5), 1038-1050. https://doi.org/10.1111/ffe.13214.
- Dall'Asta, A., Dezi, L. and Leoni, G. (2002), "Failure mechanisms of externally prestressed composite beams with partial shear connection", Steel Compos. Struct., 2(5), 315-330. https://doi.org/10.12989/scs.2002.2.5.315.
- Daneshjoo, Z., Shokrieh, M.M. and Fakoor, M. (2018), "A micromechanical model for prediction of mixed mode I/II delamination of laminated composites considering fiber bridging effects", Theor. Appl. Fract. Mech., 94, 46-56. https://doi.org/10.1016/j.tafmec.2017.12.002.
- Di Cocco, V., Iacoviello, F. and Cavallini, M. (2010), "Damaging micromechanisms characterization of a ferritic ductile cast iron", Eng. Fract. Mech., 77(11), 2016-2023. https://doi.org/10.1016/j.engfracmech.2010.03.037.
- Di Cocco, V., Iacoviello, F., Rossi, A. and Iacoviello, D. (2014), "Macro and microscopical approach to the damaging micromechanisms analysis in a ferritic ductile cast iron", Theor. Appl. Fract. Mech., 69, 26-33. https://doi.org/10.1016/j.tafmec.2013.11.003.
- Edlund, J., Lindstrom, H., Nilsson, F. and Reale, M. (2006), "Modulus of elasticity of Norway spruce saw logs vs. structural lumber grade", Holz als Roh-und Werkstoff, 64(4), 273-279. https://doi.org/10.1007/s00107-005-0091-7.
- Fakoor, M. (2017), "Augmented Strain Energy Release Rate (ASER): a novel approach for investigation of mixed-mode I/II fracture of composite materials", Eng. Fract. Mech., 179, 177-189. https://doi.org/10.1016/j.engfracmech.2017.04.049.
- Fakoor, M. and Farid, H.M. (2019), "Mixed-mode I/II fracture criterion for crack initiation assessment of composite materials", Acta Mechanica, 230(1), 281-301. https://doi.org/10.1007/s00707-018-2308-y.
- Fakoor, M. and Ghoreishi, S.M.N. (2018), "Experimental and numerical investigation of progressive damage in composite laminates based on continuum damage mechanics", Polymer Testing, 70, 533-543. https://doi.org/10.1016/j.polymertesting.2018.08.013.
- Fakoor, M. and Khansari, N.M. (2016), "Mixed mode I/II fracture criterion for orthotropic materials based on damage zone properties", Eng. Fract. Mech., 153, 407-420. https://doi.org/10.1016/j.engfracmech.2015.11.018.
- Fakoor, M. and Khansari, N.M. (2018), "General mixed mode I/II failure criterion for composite materials based on matrix fracture properties", Theor. Appl. Fract. Mech., 96, 428-442. https://doi.org/10.1016/j.tafmec.2018.06.004.
- Fakoor, M. and Khezri, M.S. (2020), "A micromechanical approach for mixed mode I/II failure assessment of cracked highly orthotropic materials such as wood", Theor. Appl. Fract. Mech., 109, 102740. https://doi.org/10.1016/j.tafmec.2020.102740.
- Fakoor, M. and Rafiee, R. (2013), "Fracture investigation of wood under mixed mode I/II loading based on the maximum shear stress criterion", Strength Mater., 45(3), 378-385. https://doi.org/10.1007/s11223-013-9468-8.
- Fakoor, M., Rafiee, R. and Zare, S. (2019), "Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials", Steel Compos. Struct., 30(1), 1-12. https://doi.org/10.12989/scs.2019.30.1.001.
- Fakoor, M. and Shahsavar, S. (2020), "Fracture assessment of cracked composite materials: Progress in models and criteria", Theoretical and Applied Fracture Mech., 105, 102430. https://doi.org/10.1016/j.tafmec.2019.102430.
- Farid, H.M. and Fakoor, M. (2019), "Mixed mode I/II fracture criterion for arbitrary cracks in orthotropic materials considering T-stress effects", Theor. Appl. Fract. Mech., 99, 147-160. https://doi.org/10.1016/j.tafmec.2018.11.015.
- Farid, H.M. and Fakoor, M. (2020), "Mixed mode I/II fracture criterion to anticipate behavior of the orthotropic materials", Steel Compos. Struct., 34(5), 671-679. https://doi.org/10.12989/scs.2020.34.5.671.
- Fernandino, D.O., Boeri, R.E., Di Cocco, V., Bellini, C. and Iacoviello, F. (2020a), "Damage evolution during tensile test of austempered ductile iron partially austenized", Mater. Design Process. Commun., 2(4), e157. https://doi.org/10.1002/mdp2.157.
- Fernandino, D.O., Di Cocco, V., Boeri, R.E. and Iacoviello, F. (2020b), "Microstrain measurements and damage analysis during tensile loading of intercritical austempered ductile iron", Fatigue Fract. Eng. M., 43(11), 2744-2755. https://doi.org/10.1111/ffe.13346.
- Fernandino, D.O., Tenaglia, N., Di Cocco, V., Boeri, R.E. and Iacoviello, F. (2020c), "Relation between microstructural heterogeneities and damage mechanisms of a ferritic spheroidal graphite cast iron during tensile loading", Fatigue Fract. Eng. M., 43(6), 1262-1273. https://doi.org/10.1111/ffe.13221.
- Golewski, G.L. (2017a), "Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture", J. Civil Eng. Management, 23(5), 613-620. https://doi.org/10.3846/13923730.2016.1217923.
- Golewski, G.L. (2017b), "Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading", Struct. Eng. Mech., 62(1), 1-9. https://doi.org/10.12989/sem.2017.62.1.001.
- Golewski, G.L. (2017c), "Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure", Mater. Characterization, 134, 335-346. https://doi.org/10.1016/j.matchar.2017.11.008.
- Golewski, G.L. (2018), "An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives", Compos. Struct., 200, 515-520. https://doi.org/10.1016/j.compstruct.2018.05.144.
- Golewski, G.L. (2019a), "The influence of microcrack width on the mechanical parameters in concrete with the addition of fly ash: Consideration of technological and ecological benefits", Constr. Build. Mater., 197, 849-861. https://doi.org/10.1016/j.conbuildmat.2018.08.157.
- Golewski, G.L. (2019b), "Physical characteristics of concrete, essential in design of fracture-resistant, dynamically loaded reinforced concrete structures", Mater. Design Process. Commun., 1(5), e82. https://doi.org/10.1002/mdp2.82
- Golewski, G.L. (2020), "Changes in the fracture toughness under mode II loading of low calcium fly ash (LCFA) concrete depending on ages", Materials, 13(22), 5241. https://doi.org/10.3390/ma13225241.
- Golewski, G.L. (2021), "The Beneficial Effect of the Addition of Fly Ash on Reduction of the Size of Microcracks in the ITZ of Concrete Composites under Dynamic Loading", Energies, 14(3), 668. https://doi.org/10.3390/en14030668.
- Golewski, G.L. and Gil, D.M. (2021), "Studies of Fracture Toughness in Concretes Containing Fly Ash and Silica Fume in the First 28 Days of Curing", Materials, 14(2), 319. https://doi.org/10.3390/ma14020319.
- Hunt, D.G. and Croager, W.P. (1982), "Mode II fracture toughness of wood measured by a mixed-mode test method", J. Mater. Sci. Lett., 1(2), 77-79. https://doi.org/10.1007/BF00731031.
- Jernkvist, L.O. (2001a), "Fracture of wood under mixed mode loading: I. Derivation of fracture criteria", Eng. Fracture Mech., 68(5), 549-563. https://doi.org/10.1016/S0013-7944(00)00127-2.
- Jernkvist, L.O. (2001b), "Fracture of wood under mixed mode loading: II. Experimental investigation of Picea abies", Eng. Fracture Mech., 68(5), 565-576. https://doi.org/10.1016/S0013-7944(00)00128-4.
- Kaman, M.O. and Cetisli, F. (2012), "Numerical analysis of center cracked orthotropic fgm plate: Crack and material axes differ by θ", Steel Compos. Struct., 13(2), 187-206. https://doi.org/10.12989/scs.2012.13.2.187.
- Khansari, N.M., Fakoor, M. and Berto, F. (2019), "Probabilistic micromechanical damage model for mixed mode I/II fracture investigation of composite materials", Theor. Appl. Fract. Mech., 99, 177-193. https://doi.org/10.1016/j.tafmec.2018.12.003.
- Kollmann, F.F., Kuenzi, E.W. and Stamm, A.J. (2012), Principles of Wood Science and Technology: II Wood Based Materials. Springer Science & Business Media.
- Leicester, R.H. (2006), "Application of linear fracture mechanics to notched timber elements", Progress Struct. Eng. Mater., 8(1), 29-37. https://doi.org/10.1002/pse.210.
- Mall, S., Murphy, J.F. and Shottafer, J.E. (1983), "Criterion for mixed mode fracture in wood", J. Eng. Mech., 109(3), 680-690. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:3(680).
- Marsavina, L., Pop, I.O. and Linul, E. (2019), "Mechanical and fracture properties of particleboard", Frattura Ed., Integrita Strutturale, 13(47), 266-276. https://doi.org/10.3221/IGFESIS.47.20.
- McKinney, J.M. (1972), "Mixed-mode fracture of unidirectional graphite/epoxy composites", J. Compos. Mater., 6(1), 164-166. https://doi.org/10.1177%2F002199837200600115. https://doi.org/10.1177%2F002199837200600115
- Mirsayar, M.M., Razmi, A. and Berto, F. (2018), "Tangential strain-based criteria for mixed-mode I/II fracture toughness of cement concrete", Fatigue Fract. Eng. M., 41(1), 129-137. https://doi.org/10.1111/ffe.12665.
- Nobile, L., Piva, A. and Viola, E. (2004), "On the inclined crack problem in an orthotropic medium under biaxial loading", Eng. Fract. Mech., 71(4-6), 529-546. https://doi.org/10.1016/S0013-7944(03)00051-1.
- Razavi, S.M.J. and Berto, F. (2019), "A new fixture for fracture tests under mixed mode I/II/III loading", Fatigue Fract. Eng. M., 42(9), 1874-1888. https://doi.org/10.1111/ffe.13033,
- Reynolds, T.P., Sharma, B., Serrano, E., Gustafsson, P.J. and Ramage, M.H. (2019), "Fracture of laminated bamboo and the influence of preservative treatments", Compos. Part B: Eng., 174, 107017. https://doi.org/10.1016/j.compositesb.2019.107017.
- Rizov, V.I. (2017), "Non-linear study of mode II delamination fracture in functionally graded beams", Steel Compos. Struct., 23(3), 263-271. https://doi.org/10.12989/scs.2017.23.3.263.
- Romanowicz, M. (2019), "A non-local stress fracture criterion accounting for the anisotropy of the fracture toughness", Eng. Fract. Mech., 214, 544-557. https://doi.org/10.1016/j.engfracmech.2019.04.033.
- Romanowicz, M. and Seweryn, A. (2008), "Verification of a nonlocal stress criterion for mixed mode fracture in wood", Eng. Fract. Mech., 75(10), 3141-3160. https://doi.org/10.1016/j.engfracmech.2007.12.006.
- Ross, R.J. (2010), Wood handbook: wood as an engineering material. USDA Forest Service, Forest Products Laboratory. General Technical Report FPL-GTR-190, 509(5).
- Scorza, D., et al. (2019), "Size-effect independence of particleboard fracture toughness", Compos. Struct., 229, 111374. https://doi.org/10.1016/j.compstruct.2019.111374.
- Saouma, V.E., Ayari, M.L. and Leavell, D.A. (1987), "Mixed mode crack propagation in homogeneous anisotropic solids", Eng. Fract. Mech., 27(2), 171-184. https://doi.org/10.1016/0013-7944(87)90166-4.
- Shahsavar, S., Fakoor, M. and Berto, F. (2020), "Verification of reinforcement isotropic solid model in conjunction with maximum shear stress criterion to anticipate mixed mode I/II fracture of composite materials", Acta Mechanica, 1-20. https://doi.org/10.1007/s00707-020-02810-8.
- Sih, G.C., Paris, P.C. and Irwin, G.R. (1965), "On cracks in rectilinearly anisotropic bodies", Int. J. Fract. Mech., 1(3), 189-203. https://doi.org/10.1007/BF00186854.
- Su, R.K.L. and Sun, H.Y. (2003), "Numerical solutions of two-dimensional anisotropic crack problems", Int. J. Solids Struct., 40(18), 4615-4635. https://doi.org/10.1016/S0020-7683(03)00310-X.
- Toribio, J. and Ayaso, F.J. (2003), "A fracture criterion for high-strength steel structural members containing notch-shape defects", Steel Compos. Struct., 3(4), 231-242. https://doi.org/10.12989/scs.2003.3.4.231.
- Van der Put, T.A.C.M. (2007), "A new fracture mechanics theory for orthotropic materials like wood", Eng. Fract. Mech., 74(5), 771-781. https://doi.org/10.1016/j.engfracmech.2006.06.015.
- Wang, D., Lin, L., Fu, F. and Fan, M. (2019), "The softwood fracture mechanisms at the scales of the growth ring and cell wall under bend loading", Wood Sci. Technol., 53(6), 1295-1310. https://doi.org/10.1007/s00226-019-01132-w.
- Williams, M.L. (1961), The bending stress distribution at the base of a stationary crack. https://doi.org/10.1115/1.3640470
- Wu, E.M. (1967), Application of fracture mechanics to anisotropic plates. https://doi.org/10.1115/1.3607864