DOI QR코드

DOI QR Code

Circular perforated steel yielding demountable shear connector for sustainable precast composite floors

  • He, Jun (School of Civil Engineering, Changsha University of Science and Technology) ;
  • Vasdravellis, George (Institute for Infrastructure and Environment, Heriot-Watt University) ;
  • Wang, Sihao (Department of Bridge Engineering, Tongji University)
  • Received : 2020.06.14
  • Accepted : 2021.05.15
  • Published : 2021.06.25

Abstract

A circular steel-yielding demountable shear connector is proposed. The connector consists of a short perforated circular hollow section (CHS) welded on a base plate which in turn is bolted on the top flange of a steel section. The connector provides longitudinal shear resistance in all directions through yielding of steel and is used in conjunction with precast hollow core slab units. The mechanical behaviour is first studied using a previously validated detailed finite element model simulating horizontal pushout tests, by conducting a series of parametric studies to identify all failure modes of the novel connector. Based on the results of the numerical pushout tests, design equations to predict the strength of the connector are proposed. A composite beam using hollow core slabs and various degrees of shear connection is then simulated to verify the applicability of the circular connector and the implications in the design of composite beams.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support provided by the National Nature Science Foundations of China (51978081), Horizon 2020- Marie Sklodowska-Curie Individual Fellowship of European Commission (REUSE: 793787).

References

  1. Abaqus/Explicit user's manual, version (2018), Pawtucket: Hibbit, Karlsson & Sorensen, Inc.; 2018.
  2. Ataei, A., Bradford, M.A. and Liu, X. (2016), "Experimental study of composite beams having a precast geopolymer concrete slab and deconstructable bolted shear connectors", Eng. Struct., 114, 1-13. https://doi.org/10.1016/j.engstruct.2015.10.041.
  3. Ban, H., Uy, B., Pathirana, S.W., Henderson, I., Mirza, O. and Zhu, X. (2015), "Time-dependent behaviour of composite beams with blind bolts under sustained loads", J. Constr. Steel Res., 112, 196-207. https://doi.org/10.1016/j.jcsr.2015.05.004
  4. Birtel, V. and Mark, P. (2006), Parameterised finite element modelling of RC beam shear failure. The 19th Annual International ABAQUS Users' Conference, ABAQUS Inc, Boston, USA, 95-108.
  5. Brambilla, G., Lavagna, M., Vasdravellis, G. and Castiglioni, C. A. (2019), "Environmental benefits arising from demountable steel-concrete composite floor systems in buildings", Resources, Conservation and Recycling, 141(October 2018), 133-142. https://doi.org/10.1016/j.resconrec.2018.10.014.
  6. BSI (British Standards Institution). (2002), Eurocode 2. Design of concrete structures. Part 1-1. General rules and rules for buildings. EN 1992-1-1. Brussels, Belgium: BSI.
  7. Couchman, G. (2014), Design of composite beams using precast concrete slabs in accordance with Eurocode 4: Steel construction institute publication P401. Ascot, UK: Berkshire
  8. Dai, X.H., Lam, D. and Saveri, E. (2015), "Effect of Concrete Strength and Stud Collar Size to Shear Capacity of Demountable Shear Connectors", J. Struct. Eng., 04015025. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001267.
  9. Densley Tingley, D. and Davison, B. (2011), "Design for deconstruction and material reuse", Proc. Inst. Civ. Eng. Energy, 164(4), 195-204. https://doi.org/10.1680/ener.2011.164.4.195.
  10. EN 1994-1-1 (2004), Eurocode 4: Design of composite steel and concrete structures. Part 1-1: General rules and rules for buildings, European Committee for Standardization (CEN), Brussels.
  11. Feidaki, E., Vasdravellis, G., He, J. and Wang, S. (2019), "Steel-Yielding Demountable Shear Connector for Composite Floors with Precast Hollow-Core Slab Units", J. Struct. Eng., 145(8), 1-17. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002356.
  12. FIB, Model Code (2010), Final Draft, vol. 1, 2010 (Lausanne).
  13. He, J., Lin, Z., Liu, Y., Xu, X., Xin, H. and Wang, S. (2020), "Shear stiffness of headed studs on structural behaviors of steel-concrete composite girders", Steel Compos. Struct., 36(5), 553-568. https://doi.org/10.12989/scs.2020.36.5.553.
  14. Henderson, I.E.J., Zhu, X.Q., Uy, B. and Mirza, O. (2015), "Dynamic behaviour of steel-concrete composite beams with different types of shear connectors. Part I: Experimental study", Eng. Struct., 103, 298-307. https://doi.org/10.1016/j.engstruct.2015.08.035.
  15. Hordijk, D.A. (1992), "Tensile and tensile fatigue behaviour of concrete; experiments, modelling and analyses", Heron, 37, 3-79.
  16. IEA (International Energy Association). (2007), Tracking industrial energy efficiency and CO2 emissions. Paris: IEA
  17. Kozma, A., Odenbreit, C., Braun, M.V., Veljkovic, M. and Nijgh, M.P. (2019), "Push-out tests on demountable shear connectors of steel-concrete composite structures", Structures, 21, 45-54. https://doi.org/10.1016/j.istruc.2019.05.011.
  18. Lam, D., Elliott, K.S. and Nethercot, D.A. (2000a), "Experiments on composite steel beams with precast concrete hollow core floor slabs", Proceedings of the Institution of Civil Engineers, Structures and Buildings, 140, 127-138. https://doi.org/10.1680/stbu.2000.140.2.127.
  19. Lam, D., Elliott, K.S. and Nethercot, D.A. (2000b), "Design procedures for composite steel beams with precast concrete hollow core floor slabs", Proceedings of the Institution of Civil Engineers, Structures and Buildings, 140(5), 139-149. https://doi.org/10.1680/stbu.2000.140.2.139.
  20. Lin, Z., Liu, Y. and He, J. (2014), "Behavior of stud connectors under combined shear and tension loads", Eng. Struct., 81, 362-376. https://doi.org/10.1016/j.engstruct.2014.10.016.
  21. Lin, Z., Liu, Y. and He, J. (2015), "Static behaviour of lying multi-stud connectors in cable-pylon anchorage zone", Steel Compos. Struct., 18(6), 1369-1389. http://dx.doi.org/10.12989/scs.2015.18.6.1369.
  22. Liu, X., Bradford, M.A. and Ataei, A. (2017), "Flexural performance of innovative sustainable composite steel-concrete beams", Eng. Struct., 130, 282-296. https://doi.org/10.1016/j.engstruct.2016.10.009.
  23. Moynihan, M.C. and Allwood, J.M. (2014), "Viability and performance of demountable composite connectors", J. Constr. Steel Res., 99, 47-56. https://doi.org/10.1016/j.jcsr.2014.03.008.
  24. Oberle, B., Bringezu, S., Hatfield-Dodds, S., Hellweg, S., Schandl, H., Clement, J. and Zhu, B. (2019), Global Resources Outlook.
  25. Pathirana, S.W., Uy, B., Mirza, O. and Zhu, X. (2016a), "Bolted and welded connectors for the rehabilitation of composite beams", J. Constr. Steel Res., 125, 61-73. https://doi.org/10.1016/j.jcsr.2016.06.003.
  26. Pathirana, S.W., Uy, B., Mirza, O. and Zhu, X. (2016b), "Flexural behaviour of composite steel-concrete beams utilising blind bolt shear connectors", Eng. Struct., 114, 181-194. https://doi.org/10.1016/j.engstruct.2016.01.057.
  27. Pavlovic, M., Markovic, Z., Veljkovic, M. and Budevac, D. (2013), "Bolted shear connectors vs. headed studs behaviour in pushout tests", J. Constr.l Steel Res., 88, 134-149. https://doi.org/10.1016/j.jcsr.2013.05.003.
  28. Rehman, N., Lam, D., Dai, X. and Ashour, A.F. (2016), "Experimental study on demountable shear connectors in composite slabs with profiled decking", J. Constr. Steel Res., 122, 178-189. https://doi.org/10.1016/j.jcsr.2016.03.021.
  29. Suwaed, A.S.H. and Karavasilis, T.L. (2017), "Novel Demountable Shear Connector for Accelerated Disassembly, Repair, or Replacement of Precast Steel-Concrete Composite Bridges", J. Bridge Eng., 22(9), 04017052. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001080.
  30. Suwaed, A.S.H. and Karavasilis, T.L. (2018), "Removable shear connector for steel-concrete composite bridges", Steel Compos, Struct., 29(1), 107-123. https://doi.org/10.12989/scs.2018.29.1.107.
  31. Suwaed, A.S.H. and Karavasilis, T.L. (2020), "Demountable steel-concrete composite beam with full-interaction and low degree of shear connection", J. Constr. Steel Res., 171, 106152. https://doi.org/10.1016/j.jcsr.2020.106152.
  32. Wang, L., Webster, M.D. and Hajjar, J.F. (2019), "Pushout tests on deconstructable steel-concrete shear connections in sustainable composite beams", J. Constr. Steel Res., 153, 618-637. https://doi.org/10.1016/j.jcsr.2018.10.020.
  33. Wang, L., Webster, M.D. and Hajjar, J.F. (2020), "Design for Deconstruction Using Sustainable Composite Beams with Precast Concrete Planks and Clamping Connectors", J. Struct. Eng., 146(8), 1-15. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002659.
  34. Webster, M. and Costello, D. (2005), Designing structural systems for deconstruction: How to extend a new building's useful life and prevent it from going to waste when the end finally comes. In Proc., Green Building Conf. Atlanta.
  35. Xue, D.Y., Liu, Y.Q., Yu, Z. and He, J. (2012), "Static behavior of multi-stud shear connectors for steel-concrete composite bridge", J. Constr. Steel Res., 74, 1-7. https://doi.org/10.1016/j.jcsr.2011.09.017.
  36. Yang, F., Liu, Y., Jiang, Z. and Xin, H. (2018), "Shear performance of a novel demountable steel-concrete bolted connector under static pushout tests", Eng. Struct., https://doi.org/10.1016/j.engstruct.2018.01.005.
  37. Zheng, S., Liu, Y., Yoda, T. and Lin, W. (2016), "Shear behavior and analytical model of perfobond connectors", Steel Compos. Struct., 20(1), 71-89. https://doi.org/10.12989/scs.2016.20.1.071.

Cited by

  1. Horizontal pushout tests and parametric analyses of a locking-bolt demountable shear connector vol.35, 2022, https://doi.org/10.1016/j.istruc.2021.11.041