Acknowledgement
This work is sponsored by the National Natural Science Foundation of China (52008398, 51778630), the Hunan Innovative Provincial Construction Project (2019RS3009).
References
- Adeli, H. (1985), "Approximate formulae for period of vibrations of building systems", Civil Eng. Pract. Des. Eng., 4(1), 93-128.
- AISC 341-10 (2010), Seismic Provisions for Structural Steel buildings, American Institute for Steel Construction, Chicago, IL.
- Al-Aasam, H.S. and Mandal, P. (2012), "Simplified procedure to calculate by hand the fundamental periods of semirigid steel frames", J. Struct. Eng., 139(6), 1082-1087. https://doi.org/10.1061/(asce)st.1943-541x.0000695
- Aninthaneni, P.K. and Dhakal, R. (2017a), "Prediction of lateral stiffness and fundamental period of concentrically braced frame buildings", Bull. Earthq. Eng., 15(7), 3053-3082. https://doi.org/10.1007/s10518-016-0081-7.
- Aninthaneni, P.K. and Dhakal, R.P. (2016), "Prediction of fundamental period of regular frame buildings", Bull. NZ Soc. Earthq. Eng., 49(2) 175-189. https://doi.org/10.5459/bnzsee.49.2.175-189.
- ANSYS (2002), Programmer's Guide, ANSYS. Inc.
- ASCE 7-10 (2010), Minimum Design Loads for Buildings and other Structures, American Society of Civil Engineers, Reston, USA.
- Astaneh-Asl, A. (2001), "Seismic behavior and design of steel shear walls", Steel TIPS Rep., Structural Steel Educational Council, Moraga, CA.
- Asteris, P.G., Repapis, C.C., Cavaleri, L., Sarhosis, V. and Athanasopoulou, A. (2015), "On the fundamental period of infilled RC frame buildings", Struct. Eng. Mech., 54(6), 1175-1200. https://doi.org/10.12989/sem.2015.54.6.1175.
- Asteris, P.G., Repapis, C.C., Foskolos, F., Fotos, A. and Tsaris, A. K. (2017a), "Fundamental period of infilled RC frame structures with vertical irregularity", Struct. Eng. Mech., 61(5), 663-674. https://doi.org/10.12989/sem.2017.61.5.663.
- Asteris, P.G., Repapis, C.C., Repapi, E.V. and Cavaleri, L. (2017b), "Fundamental period of infilled reinforced concrete frame structures", Struct. Infrastr. Eng., 13(7), 929-941. https://doi.org/10.1080/15732479.2016.1227341.
- Beiraghi, H. (2017), "Fundamental period of masonry infilled moment-resisting steel frame buildings", Struct. Des. Tall. Spec., 26(5), e1342. https://doi.org/10.1002/tal.1342.
- Berman, J.W. (2011), "Seismic behavior of code designed steel plate shear walls", Eng. Struct., 33(1), 230-244. https://doi.org/10.1016/j.engstruct.2010.10.015.
- Bernuzzi, C., Gobetti, A., Gabbianelli, G. and Simoncelli, M. (2015), "Simplified approaches to design medium-rise unbraced steel storage pallet racks. II: Fundamental period estimates", J. Struct. Eng., 141(11), 04015037. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001278.
- Bernuzzi, C., Rodigari, D. and Simoncelli, M. (2019), "Post-earthquake damage assessment of moment resisting steel frames", Ing. Sismica, 36(4), 35-55.
- Bhowmick, A.K., Grondin, G.Y. and Driver, R.G. (2011), "Estimating fundamental periods of steel plate shear walls", Eng. Struct., 33(6), 1883-1893. https://doi.org/10.1016/j.engstruct.2011.02.010.
- Caccese, V., Elgaaly, M. and Chen, R. (1993), "Experimental study of thin steel-plate shear walls under cyclic load", J. Struct. Eng., 119(2), 573-587. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:2(573).
- Chrysanthakopoulos, C., Bazeos, N. and Beskos, D.E. (2006), "Approximate formulae for natural periods of plane steel frames", J. Const. Steel. Res., 62(6), 592-604. https://doi.org/10.1016/j.jcsr.2005.09.005.
- Clayton, P.M., Berman, J.W. and Lowes, L.N. (2015), "Seismic performance of self-centering steel plate shear walls with beam-only-connected web plates", J. Const. Steel. Res., 106, 198-208. https://doi.org/10.1016/j.jcsr.2014.12.017.
- Cortes, G. and Liu, J. (2011), "Experimental evaluation of steel slit panel-frames for seismic resistance", J. Const. Steel. Res., 67(2), 181-191. https://doi.org/10.1016/j.jcsr.2010.08.002.
- Driver, R.G., Kulak, G.L., Kennedy, D.L. and Elwi, A.E. (1998), "Cyclic test of four-story steel plate shear wall", J. Struct. Eng., 124(2), 112-120. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:2(112).
- Dunkerley, S. (1894), "On the whirling and vibration of shafts", Philos. Tran. R. Soc. London A, 185, 279-360. https://doi.org/10.1098/rsta.1894.0008.
- Eurocode 8 (2003), Design of Structures for Earthquake Resistance. Part 1: General Rules, Seismic Actions and Rules for Buildings. Brussels.
- Fathy, E. (2020), "Seismic assessment of thin steel plate shear walls with outrigger system", Struct. Eng. Mech., 74(2), 267-282. http://doi.org/10.12989/sem.2020.74.2.267.
- GB 50009 (2012), Load Code for the Design of Building Structures, Beijing, China.
- Ghazanfarah, H., Aiman, M., Ghasan, D. and Ghyslaine, M. (2014), "Predicting the fundamental period of light-frame wood buildings", J. Perform. Constr. Facil., 28(6), 1082-1087. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000519.
- Goel, R.K. and Chopra, A.K. (1997), "Period formulas for moment-resisting frame buildings", J. Struct. Eng., 123(11), 1454-1461. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:11(1454).
- Gunaydin, E. and Topkaya, C. (2013), "Fundamental periods of steel concentrically braced frames designed to Eurocode 8", Earthq. Eng. Struct. D., 42(10), 1415-1433. https://doi.org/10.1002/eqe.2279.
- Guo, L., Rong, Q., Ma, X. and Zhang, S. (2011), "Behavior of steel plate shear wall connected to frame beams only", Int. J. Steel. Struct., 11(4), 467-479. https://doi.org/10.1007/s13296-011-4006-7.
- Hatzigeorgiou, G.D. and Kanapitsas, G. (2013), "Evaluation of fundamental period of low-rise and mid-rise reinforced concrete buildings", Earthq. Eng. Struct. D., 42(11), 1599-1616. https://doi.org/10.1002/eqe.2289.
- Hu, Y., Zhao, J. and Jiang, L. (2017), "Seismic risk assessment of steel frames equipped with steel panel wall", Struct. Des. Tall. Spec., 26(10), e1368. https://doi.org/10.1002/tal.1368.
- Jiang, L. and Ye, J. (2019), "Redundancy of a mid-rise CFS composite shear wall building based on seismic response sensitivity analysis", Eng. Struct., 200, 109647. https://doi.org/10.1016/j.engstruct.2019.109647.
- Jiang, L., Hong, Z. and Hu, Y. (2018), "Effects of various uncertainties on seismic risk of steel frame equipped with steel panel wall", Bull. Earthq. Eng., 16(12), 5995-6012. https://doi.org/10.1007/s10518-018-0423-8.
- Jiang, L., Jiang, L., Hu, Y., Ye, J. and Zheng, H. (2020a), "Seismic life-cycle cost assessment of steel frames equipped with steel panel walls", Eng. Struct., 211, 110399. https://doi.org/10.1016/j.engstruct.2020.110399.
- Jiang, L., Jiang, L., Ye, J. and Zheng, H. (2020b), "Macroscopic modelling of steel frames equipped with bolt-connected reinforced concrete panel wall", Eng. Struct., 213, 110549. https://doi.org/10.1016/j.engstruct.2020.110549.
- Jiang, L., Zheng, H. and Hu, Y. (2017), "Experimental seismic performance of steel- and composite steel-panel wall strengthened steel frames", Arch. Civil. Mech. Eng., 17(3), 520-534. https://doi.org/10.1016/j.acme.2016.11.007.
- Jiang, R., Jiang, L., Hu, Y., Ye, J. and Zhou, L. (2020c), "A simplified method for estimating the fundamental period of masonry infilled reinforced concrete frames", Struct. Eng. Mech., 74(6), 821-832. http://dx.doi.org/10.12989/sem.2020.74.6.821.
- Kose, M.M. (2009), "Parameters affecting the fundamental period of RC buildings with infill walls", Eng. Struct., 31(1), 93-102. https://doi.org/10.1016/j.engstruct.2008.07.017.
- Kusyilmaz, A. and Topkaya, C. (2015), "Fundamental Periods of Steel Eccentrically Braced Frames", Struct. Des. Tall. Spec., 24(2), 123-140. https://doi.org/10.1002/tal.1157.
- Liu, S., Warn, G.P. and Berman, J.W. (2012), "Estimating fundamental periods of steel plate shear wall frames", J. Struct. Eng., 139(1), 155-161. https://doi.org/10.1016/j.engstruct.2011.02.010.
- NBCC (2005), National Building Code of Canada, 12th Edition, Canadian Commission on Building and Fire Codes, National Research Council of Canada, Ottawa.
- Pan, T.C., Goh, K.S. and Megawati, K. (2014), "Empirical relationships between fundamental vibration period and height of buildings in Singapore", Earthq. Eng. Struct. D., 43(3), 449-465. https://doi.org/10.1002/eqe.2356.
- Sabourighomi, S., Ventura, C.E. and Kharrazi, M.H. (2005), "Shear analysis and design of ductile steel plate walls", J. Struct. Eng., 131(6), 878-889. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:6(878).
- Topkaya, C. and Atasoy, M. (2009), "Lateral Stiffness of Steel Plate Shear Wall Systems", Thin Wall. Struct., 47(8-9), 827-835. https://doi.org/10.1016/j.tws.2009.03.006.
- Topkaya, C. and Kurban, C.O. (2009), "Natural Periods of Steel Plate Shear Wall Systems", J. Const. Steel. Res., 65(3), 542-551. https://doi.org/10.1016/j.jcsr.2008.03.006.
- Wang, Q. and Wang, L.Y. (2005), "Estimating periods of vibration of buildings with coupled shear walls", J. Struct. Eng., 131(12), 1931-1935. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1931).
- Wei, M., Liew, J.Y., Yong, D. and Fu, X. (2017), "Experimental and numerical investigation of novel partially connected steel plate shear walls", J. Const. Steel. Res., 132, 1-15. https://doi.org/10.1016/j.jcsr.2017.01.013.
- Young, K. and Adeli, H. (2014), "Fundamental period of irregular moment-resisting steel frame structures", Struct. Des. Tall. Spec., 23(15), 1141-1157. https://doi.org/10.1002/tal.1112.
- Young, K. and Adeli, H. (2016), "Fundamental period of irregular eccentrically braced tall steel frame structures", J. Const. Steel. Res., 120, 199-205. https://doi.org/10.1016/j.jcsr.2016.01.001.
- Zhang, W., Chen, Y., Kou, W. and Du, X. L. (2018), "Simplified calculation method for the fundamental period of floating cable-stayed bridge", Arch. Appl. Mech., 88(3), 329-339. https://doi.org/10.1007/s00419-017-1311-4.