DOI QR코드

DOI QR Code

Stability of caisson-type breakwater using coupled Fluid-Porous model

  • Ding, Dong (Alliance Sorbonne Universite, Universite de Technologie de Compiegne, Laboratoire Roberval Centre de Recherches Royallieu) ;
  • Ouahsine, Abdellatif (Alliance Sorbonne Universite, Universite de Technologie de Compiegne, Laboratoire Roberval Centre de Recherches Royallieu) ;
  • Huang, Zhaoyuan (Alliance Sorbonne Universite, Universite de Technologie de Compiegne, Laboratoire Roberval Centre de Recherches Royallieu)
  • Received : 2021.03.02
  • Accepted : 2021.04.21
  • Published : 2021.06.25

Abstract

Breakwaters are used for the protection of harbors and beaches against wave action. This paper focuses on the analysis of the stability of the caisson-type breakwater under Flip-through wave impacts using a coupled Fluid-Porous model. The fluid hydrodynamic is described by the Volume-averaged Reynolds-Averaged Navier-Stokes (VARANS) equation with k-ε model. The flow in the porous medium and armour layer is simulated by the extended Forchheimerlaw. The developed model is used to estimate the influence of the thickness of armour layer and angle of wave return wall. Thus, a new relation of the overtopping discharge with the thickness of armour layer and angle of wave return wall is established, which can be used to design the structure of breakwater according to the limited value of overtopping wave discharge.

Keywords

Acknowledgement

The first author of this paper was financially supported by the China Scholarship Council.

References

  1. Bruce, T., Van Der Meer, J., Pullen, T. and Allsop, W. (2010), "Wave overtopping at vertical and steep structures", Handbook of Coastal and Ocean Engineering, 411-439.
  2. Cai, S.G., Ouahsine, A., Favier, J. and Hoarau, Y. (2017), "Moving immersed boundary method", Int. J. Numer. Meth. Fluid., 85(5), 288-323. https://doi.org/10.1002/fld.4382.
  3. Craik, A.D. (2004), "The origins of water wave theory", Ann. Rev. Fluid Mech., 36, 1-28. https://doi.org/10.1146/annurev.fluid.36.050802.122118.
  4. Cui, F., Daskiran, C., King, T., Robinson, B. and Lee, K. (2020), "Modeling oil dispersion under breaking waves. Part I: Wave hydrodynamics", Environ. Fluid Mech., 20, 15271551. https://doi.org/10.1007/s10652-020-09753-7.
  5. Darbani, M., Ouahsine, A., Villon, P., Naceur, H. and Smaoui, H. (2011), "Meshless method for shallow water equations with free surface flow", Appl. Math. Comput., 217(11), 5113-5124. https://doi.org/10.1016/j.amc.2010.07.048.
  6. Ding, D., Ouahsine, A., Xiao, W. and Du, P. (2021), "CFD/DEM coupled approach for the stability of caisson-type breakwater subjected to violent wave impact", Ocean Eng., 223, 108651. https://doi.org/10.1016/j.oceaneng.2021.108651.
  7. Du, P., Ouahsine, A. and Sergent, P. (2018), "Hydrodynamics prediction of a ship in static and dynamic states", Coupl. Syst. Mech., 7(2), 163-176. http://doi.org/10.12989/csm.2018.7.2.163.
  8. Guedda, M. and Ouahsine, A. (2012), "Similarity solutions of MHD flows in a saturated porous medium", Eur. J. Mech.-B/Fluid., 33, 87-94. https://doi.org/10.1016/j.euromechflu.2011.12.002.
  9. Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2018a), "Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure", Coupl. Syst. Mech., 7(6), 649-668. http://doi.org/10.12989/csm.2018.7.6.649.
  10. Hattori, M., Arami, A. and Yui, T. (2011), "Wave impact pressure on vertical walls under breaking waves of various types", Coast. Eng., 22(1), 79-114. https://doi.org/10.1016/0378-3839(94)90049-3.
  11. Herbert, D.M., Allsop, N.W.H. and Owen, M.W. (1995), "Overtopping of sea walls under random waves", 24th International Conference on Coastal Engineering, 1130-1142.
  12. Higuera, P., Lara, J.L. and Losada, I.J. (2014), "Three-dimensional interaction of waves and porous coastal structures using OpenFOAM. Part I: Formulation and validation", Coast. Eng., 83, 243-258. https://doi.org/10.1016/j.coastaleng.2013.08.010.
  13. Hsu, T.J., Sakakiyama, T. and Liu, P.L. (2002), "A numerical model for wave motions and turbulence flows in front of a composite breakwater", Coast. Eng., 46(1), 25-50. https://doi.org/10.1016/S0378-3839(02)00045-5.
  14. Ji, S., Ouahsine, A., Smaoui, H. and Sergent, P. (2014), "3D Modeling of sediment movement by shipsgenerated wakes in confined shipping channel", Int. J. Sedim. Res., 29(1), 49-58. https://doi.org/10.1016/S1001-6279(14)60021-4.
  15. Kaidi, S., Rouainia, M. and Ouahsine, A. (2012), "Stability of breakwaters under hydrodynamic loading using a coupled DDA/FEM approach", Coast. Eng., 55, 62-70. https://doi.org/10.1016/j.oceaneng.2012.07.035.
  16. Lugni, C., Brocchini, M. and Faltinsen, O.M. (2011), "Wave impact loads: The role of the flip-through", Phys. Fluid., 18(12), 122101. https://doi.org/10.1063/1.2399077.
  17. Martin-Medina, M., Abadie, S., Mokrani, C. and Morichon, D (2018), "Numerical simulation of flip-through impacts of variable steepness on a vertical breakwater", Appl. Ocean Res., 75, 117-131. https://doi.org/10.1016/j.apor.2018.03.013.
  18. Mendez, F.J., Losada, I.J. and Losada, M.A. (2001), "Mean magnitudes induced by regular waves inpermeable submerged breakwaters", J. Waterw. Port Coast. Ocean Eng., 127(1), 7-15. https://doi.org/10.1061/(ASCE)0733-950X(2001)127:1(7)
  19. Ouahsine, A., Smaoui, H., Meftah, K., Sergent, P. and Sabatier, F. (2013), "Numerical study of coastal sandbar migration, by hydro-morphodynamical coupling", Environ. Fluid Mech., 13(2), 169-187. https://doi.org/10.1007/s10652-012-9252-5.
  20. Pullen, T., Allsop, N.W.H., Bruce, T., Kortenhaus, A., Schuttrumpf, H. and Van der Meer, J.W. (2007), EurOtop Wave Overtopping of Sea Defences and Related Structures: Assessment Manual.
  21. Sarpkaya, T. (1986), "Force on a circular cylinder in viscous oscillatory flow at low Keulegan-Carpenter numbers", J. Fluid Mech., 165, 61-71. https://doi.org/10.1017/S0022112086002999
  22. Shaheed, R., Mohammadian, A. and Gildeh, H.K. (2019), "A comparison of standard k-ε and realizable k-ω turbulence models in curved and confluent channels", Environ. Fluid Mech., 19(2), 543-568. ttps://doi.org/10.1007/s10652-018-9637-1.
  23. Sidiropoulou, M.G., Moutsopoulos, K.N. and Tsihrintzis, V.A. (2007), "Determination of Forchheimer equation coecients a and b", Hydrol. Proc., 21(4), 534-554. https://doi.org/10.1002/hyp.6264.
  24. Smaoui, H., Zouhri, L. and Ouahsine, A. (2008), "Flux-limiting techniques for simulation of pollutant transport in porous media: Application to groundwater management", Math. Comput. Model., 47(2), 47-59. https://doi.org/10.1016/j.mcm.2007.02.006.
  25. Sorensen, J.D and Burcharth, H.F. (2000), "Reliability analysis of geotechnical failure modes for vertical wall breakwaters", Comput. Geotech., 26(3), 225-246. https://doi.org/10.1016/S0266-352X(99)00040-3
  26. Takahashi, H., Sassa, S., Morikawa, Y., Takano, D. and Maruyama, K. (2014), "Stability of caisson-type breakwater foundation under tsunami-induced seepage", Soil. Found., 54(4), 789-805. https://doi.org/10.1016/j.sandf.2014.07.002.
  27. Tran Khanh, T., Ouahsine, A., Naceur, H. and ELWassifi, K. (2013), "Assessment of ship manoeuvrability by using a coupling between a nonlinear transient manoeuvring model and mathematical programming techniques", J. Hydrodyn., 25(5), 788-804. https://doi.org/10.1016/S1001-6058(13)60426-6.
  28. Van Gent, M.R.A. (1996), "Wave interaction with permeable coastal structures", Int. J. Rock Mech. Min. Sci. Geomech. Abs., 6(33), 277A.
  29. Whitaker, S. (1996), "The Forchheimer equation: a theoretical development", Tran. Porous Media, 25(1), 27-61. https://doi.org/10.1007/BF00141261.