Acknowledgement
This work is financially supported under the research project SELT-TUM by Agence Nationale de la Recherche (ANR-16-CE92- 0036). Moreover, Prof. Adnan Ibrahimbegovic is also supported by Institut Universitaire de France (IUF). These sources of funding are gratefully acknowledged.
References
- Allaire, G. and Delgado, G. (2016), "Stacking sequence and shape optimization of laminated composite plates via a level-set method", J. Mech. Phys. Solid., 97, 168-196. https://doi.org/10.1016/j.jmps.2016.06.014.
- Auricchio, F. and Taylor, R.L. (1994), "A shear deformable plate element with an exact thin limit", Comput. Meth. Appl. Mech. Eng., 118(3-4), 393-412. https://doi.org/10.1016/0045-7825(94)90009-4.
- Auricchio, F. and Taylor, R.L. (1994), "A triangular thick plate finite element with an exact thin limit", Finite Elem. Anal. Des., 19(1-2), 57-68. https://doi.org/10.1016/0168-874X(94)00057-M.
- Babuska, I. and Scapolla, T. (1989), "Benchmark computation and performance evaluation for a rhombic plate bending problem", Int. J. Numer. Meth. Eng., 28, 155-179. https://doi.org/10.1002/nme.1620280112.
- Bathe, K.J. (2016), Finite Element Procedures, Prentice Hall, Pearson Education Inc, Massachusetts, USA.
- Batoz, J.L. (1982), "An explicit formulation for an efficient triangular plate-bending element", Int. J. Numer. Meth. Eng., 18(7), 1077-1089. https://doi.org/10.1002/nme.1620180711.
- Batoz, J.L. and Dhatt, G. (1990), Modelisation des Structures par Elements Finis Vol. 2: Poutres et Plaques, Herms, Paris, France.
- Batoz, J.L. and Dhatt, G. (1992), Modelisation des Structures par Elements Finis Vol. 3: Coques, Herms, Paris, France.
- Batoz, J.L. and Katili, I. (1992), "On a simple triangular reissner/mindlin plate element based on incompatible modes and discrete constraints", Int. J. Numer. Meth. Eng., 35(8), 1603-1632. https://doi.org/10.1002/nme.1620350805.
- Batoz, J.L., Bathe, K.J. and Ho, L.W. (1980), "A study of three-node triangular plate bending elements", Int. J. Numer. Meth. Eng., 15, 1771-1812. https://doi.org/10.1002/nme.1620151205.
- Bazeley, G.P., Cheung, Y.K., Irons, B.M. and Zienkiewicz, O.C. (1966), "Triangular elements in plate bending-Conforming and non-conforming solutions", Air Force Flight Dynamics Laboratory, 547-576.
- Belblidia, F., Bae, J., Rechak, S. and Hinton, E. (2001), "Topology optimization of plate structures using a single- or three- layered artificial material model", Adv. Eng. Softw., 32(2), 159-168. https://doi.org/10.1016/S0045-7949(00)00141-3.
- Brugnoli, A., Alazard, D., Valerie, P.B. and Matignon, D. (2019), "Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates", Appl. Math. Model., 75, 940-60. https://doi.org/10.1016/j.apm.2019.04.035.
- Brugnoli, A., Alazard, D., Valerie, P.B. and Matignon, D. (2019), "Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates", Appl. Math. Model., 75, 961-981. https://doi.org/10.1016/j.apm.2019.04.036.
- Cirak, F. and Ortiz, M. (2001), "Fully C1-conforming subdivision elements for finite deformation thin-shell analysis", Int. J. Numer. Meth. Eng., 51, 813-833. https://doi.org/10.1002/nme.182.
- Clough, R.W. and Felippa, C.A. (1968), "A refined quadrilateral element for analysis of plate bending", Air Force Flight Dynamics Laboratory, USA.
- Dolbow, J., Moes, N. and Belytschko, T. (2000), "Modeling fracture in MindlinReissner plates with the extended finite element method", Int. J. Solid. Struct., 37, 48-50. https://doi.org/10.1016/S0020-7683(00)00194-3.
- Goo, S., Wang, S., Hyun, J. and Jung, J. (2016), "Topology optimization of thin plate structures with bending stress constraints", Comput. Struct., 175, 134-143. https://doi.org/10.1016/j.compstruc.2016.07.006.
- Gruttmann, F. and Wagner, W. (2004), "A stabilized one-point integrated quadrilateral Reissner-Mindlin plate element", Int. J. Numer. Meth. Eng., 61, 2273-2295. https://doi.org/10.1002/nme.1148.
- Guo, Y.Q., Batoz, J.L., Naceur, H., Bouabdallah, S., Mercier, F. and Barlet, O. (2000), "Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach", Comput. Struct., 78(1-3), 133-148. https://doi.org/10.1016/S0045-7949(00)00095-X.
- Hrabok, M.M. and Hrudey, T.M. (1984), "A review and catalogue of plate bending finite elements", Comput. Struct., 19(3), 479-495. https://doi.org/10.1016/0045-7949(84)90055-5.
- Huang, H.C. and Hinton. E. (1984), "A nine node Lagrangian Mindlin plate element with enhanced shear interpolation", Eng. Comput., 1(4), 369-379. https://doi.org/10.1108/eb023593.
- Hughes, T.J.R. and Brezzi, F. (1989), "On drilling degrees of freedom", Comput. Meth. Appl. Mech. Eng., 72(1), 105-121. https://doi.org/10.1016/0045-7825(89)90124-2.
- Hughes, T.J.R. and Tezduyar, T. (1981), "Finite elements based upon mindlin plate theory with particular reference to the four-node bilinear isoparametric element", J. Appl. Mech., 48(3), 587-596. https://doi.org/10.1115/1.3157679.
- Hughes, T.J.R., Taylor, R.L. and Kanoknukulchai, W. (1977), "A simple and efficient finite element for plate bending", Int. J. Numer. Meth. Eng., 11(10), 1529-1543. https://doi.org/10.1002/nme.1620111005.
- Ibrahimbegovic, A. (1992), "Plate quadrilateral finite element with incompatible modes", Commun. Appl. Numer. Meth., 8, 497-504. https://doi.org/10.1002/cnm.1630080803.
- Ibrahimbegovic, A. (1993), "Quadrilateral finite elements for analysis of thick and thin plates", Comput. Meth. Appl. Mech. Eng., 110, 195-209. https://doi.org/10.1016/0045-7825(93)90160-Y.
- Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Springer, Berlin, Germany.
- Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields - Part I: An extended DKT element for thick plate bending analysis", Int. J. Numer. Meth. Eng., 36, 1859-1883. https://doi.org/10.1002/nme.1620361106.
- Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields - Part II: An extended DKQ element for thick plate bending analysis", Int. J. Numer. Meth. Eng., 36, 1885-1908. https://doi.org/10.1002/nme.1620361107.
- Katili, I., Batoz, J.L., Maknun, I.J., Hamdouni, A. and Millet, O. (2014), "The development of DKMQ plate bending element for thick to thin shell analysis based on the Naghdi/Reissner/Mindlin shell theory", Finite Elem. Anal. Des., 100, 12-27. https://doi.org/10.1016/j.finel.2015.02.005.
- Kiendl, J., Ambati, M., Lorenzis, L.D, Gomez, H. and Reali, A. (2016), "Phase-field description of brittle fracture in plates and shells", Comput. Meth. Appl. Mech. Eng., 312, 374-394. https://doi.org/10.1016/j.cma.2016.09.011.
- Konno, J. and Stenberg, R. (2010), "Finite element analysis of composite plates with an application to the paper cockling problem", Finite Elem. Anal. Des., 46(3), 265-272. https://doi.org/10.1016/j.finel.2009.10.001.
- Lavrencic, M. and Brank, B. (2021), "Hybrid-mixed low-order finite elements for geometrically exact shell models: Overview and comparison", Arch. Comput. Meth. Eng., 1-35. https://doi.org/10.1007/s11831-021-09537-2.
- Macchelli, A., Melchiorri, C. and Bassi, L. (2005), "Port-based modelling and control of the Mindlin plate", Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain.
- Mindlin, R. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 38, 18-31. https://doi.org/10.1115/1.4010217.
- Moleiro, F., Mota Soares, C.M., Mota Soares, C.A. and Reddy, J.N. (2009), "Mixed least-squares finite element models for static and free vibration analysis of laminated composite plates", Comput. Meth. Appl. Mech. Eng., 198(21-26), 1848-1856. https://doi.org/10.1016/j.cma.2008.12.023.
- Morley, L.S.D. (1971), "The constant-moment plate-bending element", J. Strain Anal. Eng. Des., 6(1), 6-20. https://doi.org/10.1243/03093247V061020.
- Nguyen, C.U. and Ibrahimbegovic, A. (2020), "Hybrid-stress triangular finite element with enhanced performance for statics and dynamics", Comput. Meth. Appl. Mech. Eng., 372, 113381. https://doi.org/10.1016/j.cma.2020.113381.
- Nguyen, C.U. and Ibrahimbegovic, A. (2020), "Visco-plasticity stress-based solid dynamics formulation and time-stepping algorithms for stiff case", Int. J. Solid. Struct., 196-197, 154-170. https://doi.org/10.1016/j.ijsolstr.2020.04.018.
- Ortiz, M. and Morris, G.R. (1988), "C0 finite element discretization of Kirchhoff's equations of thin plate bending", Int. J. Numer. Meth. Eng., 26, 1551-1566. https://doi.org/10.1002/nme.1620260707.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12, A69-A77. https://doi.org/10.1115/1.4009435.
- Reissner, E. (1976), "On the theory of transverse bending of elastic plates", Int. J. Solid. Struct., 12(8), 545-554. https://doi.org/10.1016/0020-7683(76)90001-9.
- Robinson, J. and Haggenmacher, G.W. (1979), "LORA-An accurate four node stress plate bending element", Int. J. Numer. Meth. Eng., 14(2), 296-306. https://doi.org/10.1002/nme.1620140214.
- Schollhammer, D. and Fries. T.P. (2019), "Kirchhoff-Love shell theory based on tangential differential calculus", Comput. Mech., 64, 113-131. https://doi.org/10.1007/s00466-018-1659-5.
- Taylor, R.L. (2014), "FEAP-A finite element analysis program", University of California, Berkeley.
- Tessler, A. and Hughes, T.J.R. (1983), "An improved treatment of transverse shear in the Mindlin-Type four-node quadrilateral element", Comput. Meth. Appl. Mech. Eng., 39, 311-335. https://doi.org/10.1016/0045-7825(83)90096-8.
- Ulmer, H., Hofacker, M. and Miehe, C. (2012), "Phase field modeling of fracture in plates and shells", Proc. Appl. Math. Mech., 12, 171-172. https://doi.org/10.1002/pamm.201210076.
- Viebahn, N., Pimenta, P.M. and Schroder, J. (2017), "A simple triangular finite element for nonlinear thin shells: statics, dynamics and anisotropy", Comput. Mech., 59, 281-297. https://doi.org/10.1007/s00466-016-1343-6.
- Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2005), The Finite Element Nethod: Its Basis and Fundamentals, Prentice Hall, Pearson Education Inc, USA.