가뭄의 발생원인과 위성기반 가뭄 연구의 현주소

  • 박선영 (서울과학기술대학교 인공지능응용학과) ;
  • 강대현 (전남대학교 기초과학연구소) ;
  • 서은교 (조지메이슨대학교) ;
  • 박수민 (울산과학기술원 도시환경공학부)
  • Published : 2021.05.31

Abstract

Keywords

References

  1. Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., ... & Jin, F. F. (2014). Increasing frequency of extreme El Nino events due to greenhouse warming. Nature climate change, 4(2), 111-116. https://doi.org/10.1038/nclimate2100
  2. Cowan, T., Hegerl, G. C., Schurer, A., Tett, S. F., Vautard, R., Yiou, P., ... & Ng, B. (2020). Ocean and land forcing of the record-breaking Dust Bowl heatwaves across central United States. Nature communications, 11(1), 1-9. https://doi.org/10.1038/s41467-019-13993-7
  3. Held, I. M., & Soden, B. J. (2006). Robust responses of the hydrological cycle to global warming. Journal of climate, 19(21), 5686-5699. https://doi.org/10.1175/JCLI3990.1
  4. Kamae, Y., Mei, W., & Xie, S. P. (2019). Ocean warming pattern effects on future changes in East Asian atmospheric rivers. Environmental Research Letters, 14(5), 054019. https://doi.org/10.1088/1748-9326/ab128a
  5. Kaur, A., & Sood, S. K. (2020). Deep learning based drought assessment and prediction framework. Ecological Informatics, 57, 101067. https://doi.org/10.1016/j.ecoinf.2020.101067
  6. Lorenz, D. J., Otkin, J. A., Svoboda, M., Hain, C. R., & Zhong, Y. (2018). Forecasting rapid drought intensification using the Climate Forecast System (CFS). Journal of Geophysical Research: Atmospheres, 123(16), 8365-8373. https://doi.org/10.1029/2018jd028880
  7. McCabe, G. J., Palecki, M. A., & Betancourt, J. L. (2004). Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proceedings of the National Academy of Sciences, 101(12), 4136-4141. https://doi.org/10.1073/pnas.0306738101
  8. Mishra, A. K., & Singh, V. P. (2011). Drought modeling-A review. Journal of Hydrology, 403(1-2), 157-175. https://doi.org/10.1016/j.jhydrol.2011.03.049
  9. Park, S., Kang, D., Yoo, C., Im, J., & Lee, M. I. (2020). Recent ENSO influence on East African drought during rainy seasons through the synergistic use of satellite and reanalysis data. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 17-26. https://doi.org/10.1016/j.isprsjprs.2020.02.003
  10. Park, S., Im, J., Han, D., & Rhee, J. (2020). Short-Term Forecasting of Satellite-Based Drought Indices Using Their Temporal Patterns and Numerical Model Output. Remote Sensing, 12(21), 3499. https://doi.org/10.3390/rs12213499
  11. Park, S., Seo, E., Kang, D., Im, J., & Lee, M. I. (2018). Prediction of drought on pentad scale using remote sensing data and MJO index through random forest over East Asia. Remote Sensing, 10(11), 1811. https://doi.org/10.3390/rs10111811
  12. Seo, E., Lee, M. I., & Reichle, R. H. (2021). Assimilation of SMAP and ASCAT soil moisture retrievals into the JULES land surface model using the Local Ensemble Transform Kalman Filter. Remote Sensing of Environment, 253, 112222. https://doi.org/10.1016/j.rse.2020.112222
  13. Zhu, S., Xu, Z., Luo, X., Liu, X., Wang, R., Zhang, M., & Huo, Z.(2020). Internal and external coupling of Gaussian mixture model and deep recurrent network for probabilistic drought forecasting. International Journal of Environmental Science and Technology, 1-16.