참고문헌
- Ardakani, A., Bayat, M. and Javanmard, M. (2014), "Numerical modeling of soil nail walls considering Mohr Coulomb, hardening soil and hardening soil with small-strain stiffness effect models", Geomech. Eng., 6(4), 391-401. https://doi.org/10.12989/gae.2014.6.4.391.
- Bayat, M. and Daneshjoo, F. (2015), "Seismic performance of skewed highway bridges using analytical fragility function methodology", Comput. Concrete, 16(5), 723-740. http://dx.doi.org/10.12989/cac.2015.16.5.723.
- Bayat, M., Daneshjoo, F. and Nistico, N. (2015), "Probabilistic sensitivity analysis of multi-span highway bridges", Steel Compos. Struct., 19(1), 237-262. https://doi.org/10.12989/scs.2015.19.1.237.
- Bayat, M., Kosarieh, A.H. and Javanmard, M. (2021), "Probabilistic Seismic Demand Analysis of Soil Nail Wall Structures Using Bayesian Linear Regression Approach", Sustainability, 13, 5782. https://doi.org/10.3390/su13115782.
- Beben, D. and Wrzeciono, M. (2017), "Numerical analysis of steel-soil composite (SSC) culvert under static loads", Steel Compos. Struct., 23(6), 715-726. https://doi.org/10.12989/scs.2017.23.6.715.
- Benhamida, B., Unterreiner, P. and Schlosser, F. (1997), "Numerical analysis of a full scale experimental soil nailed wall. In Ground improvement geosystems Densification and reinforcement", Proceedings of the Third International Conference on Ground Improvement Geosystems London, 3-5 June 1997.
- Benz, T. (2007), Small-strain stiffness of soils and its numerical consequences (Vol. 5). Stuttgart: Univ. Stuttgart, Inst. f. Geotechnik.
- Choobbasti, A.J., Kutanaei, S.S., Ahangari, H.T., Kardarkolai, M. M. and Motaghedi, H. (2020), "Comparison of different local site effect estimation methods in site with high thickness of alluvial layer deposits: a case study of Babol city", Arabian J. Geosci., 13, 1-9. https://doi.org/10.1007/s12517-019-5007-7
- Chu, L.M. and Yin, J.H. (2005a), "A Laboratory Device to Test the Pull out Behavior of Soil Nails", Geotech. Testing J., 28(5), 499-513. https://doi.org/10.1520/GTJ12212.
- Chu, L.M. and Yin, J.H. (2005b), "Comparison of Interface Shear Strength of Soil Nails Measured by Both Direct Shear Box Tests and Pull-Out Tests", J. Geotech. Geoenviron. Eng., 131(9), 1097-1107. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1097).
- Fan, C.C. and Luo, J.H. (2008), "Numerical study on the optimum layout of soil-nailed slopes", Comput. Geotech., 35(4), 585-599. https://doi.org/10.1016/j.compgeo.2007.09.002.
- Fan, C.C. and Luo, J.H. (2008), "Numerical study on the optimum layout of soil-nailed slopes", Comput. Geotech., 35(4), 585-599. https://doi.org/10.1016/j.compgeo.2007.09.002
- FEMA. (2009), Quantification of Building Seismic Performance Factors, FEMA P695, Washington, DC.
- Feng, X. and Xia, X.H. and Wang, J.H. (2009), The Application of small strain model in excavation, The National Natural Science Foundation of China (No.50679041).
- Fenu, L., Briseghella, B. and Marano, G.C. (2019), "Simplified method to design laterally loaded piles with optimum shape and length", Struct. Eng. Mech., 71(2), 119-129. https://doi.org/10.12989/sem.2019.71.2.119.
- Hong, C.Y., Yin, J.H., Zhou, W.H. and Pei, H.F. (2012), "Analytical study on progressive pullout behavior of a soil nail", J. Geotech. Geoenviron. Eng., 138(4), 500-507. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000610.
- Ibrahim, K.M.H.I. and Ibrahim, T.E. (2013), "Effect of historical earthquakes on pre-stressed anchor tie back diaphragm wall and on near-by building", HBRC J., 9(1), 60-67. https://doi.org/10.1016/j.hbrcj.2013.02.008
- Khemis, A., Chaouche, A.H., Athmani, A. and Tee, K.F. (2016), "Uncertainty effects of soil and structural properties on the buckling of flexible pipes shallowly buried in Winkler foundation", Struct. Eng. Mech., 59(4), 739-759. https://doi.org/10.12989/sem.2016.59.4.739.
- Kia, M., Banazadeh, M. and Bayat, M. (2018), "Rapid seismic vulnerability assessment by new regression-based demand and collapse models for steel moment frames", Earthq. Struct., 14(3), 203-214. http://dx.doi.org/10.12989/eas.2018.14.3.203.
- Kia, M., Banazadeh, M. and Bayat, M. (2019), "Rapid seismic loss assessment using new probabilistic demand and consequence models", Bull. Earthq. Eng., 17(6), 3545-3572. https://doi.org/10.1007/s10518-019-00600-9.
- Kim, J.S., Kim, J.Y. and Lee, S.R. (1997), "Analysis of soil nailed earth slope by discrete element method", Comput. Geotech., 20(1), 1-14. https://doi.org/10.1016/S0266-352X(96)00010-9.
- Kontoni, D.P.N. and Farghaly, A.A. (2019), "Mitigation of the seismic response of a cable-stayed bridge with soil-structure-interaction effect using tuned mass dampers", Struct. Eng. Mech., 69(6), 699-712. https://doi.org/10.12989/sem.2019.69.6.699.
- Kuhlmeyer, R.L. and Lysmer, J, (1973), "Finite Element Method Accuracy for Wave Propagation Problems", J. Soil Mech. Foundation Division, 99, 421-427. https://doi.org/10.1061/JSFEAQ.0001885
- Messioud, S., Sbartai, B. and Dias, D. (2016), "Seismic response of a rigid foundation embedded in a viscoelastic soil by taking into account the soil-foundation interaction", Struct. Eng. Mech., 58(5), 887-903. https://doi.org/10.12989/sem.2016.58.5.887.
- Messioud, S., Sbartai, B. and Dias, D. (2017), "Estimation of dynamic impedance of the soil-pile-slab and soil-pile-mattress-slab systems", Int. J. Struct. Stab. Dynam., 17(6), 1750057. https://doi.org/10.1142/S0219455417500572
- Moniuddin, M.K., Manjularani, P. and Govindaraju, L. (2016), "Seismic analysis of soil nail performance in deep excavation", Int. J. Geo-Eng., 7(1), 16. https://doi.org/10.1186/s40703-016-0030-y
- Nam, S.H., Song, H.W., Byun, K.J. and Maekawa, K. (2006), "Seismic analysis of underground reinforced concrete structures considering elasto-plastic interface element with thickness", Eng. Struct., 28(8), 1122-1131. https://doi.org/10.1016/j.engstruct.2005.12.003.
- Noorzad, R. and Omidvar, M. (2010), "Seismic displacement analysis of embankment dams with reinforced cohesive shell", Soil Dyn. Earthq. Eng., 30(11), 1149-1157. https://doi.org/10.1016/j.soildyn.2010.04.023
- Park, H., Lee, S.R., Kim, N.K. and Kim, T.H. (2013), "A numerical study of the pullout behavior of grout anchors underreamed by pulse discharge technology", Comput. Geotech., 47, 78-90. https://doi.org/10.1016/j.compgeo.2012.07.005
- PLAXIS, B. (2008), PLAXIS 3D Foundation material models manual. Rhoon, Netherlands.
- Plumelle C, Schlosser F, Delage P, Knochenmus G. French national research project on soil nailing: CLOUTERRE. Geotechnical Special Publication No.25, ASCE, New York; 1990.
- Seo, H.J., Jeong, K.H., Choi, H. and Lee, I.M. (2012), "Pullout resistance increase of soil nailing induced by pressurized grouting", J. Geotech. Geoenviron.l Eng., 138(5), 604-613. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000622.
- Sharma, A. and Ramkrishnan, R. (2020), "Parametric Optimization and Multi-regression Analysis for Soil Nailing Using Numerical Approaches", Geotechnical and Geological Engineering, 1-19.
- Sharma, M., Choudhury, D., Samanta, M., Sarkar, S., & Annapareddy, V. R. (2020), "Analysis of helical soil-nailed walls under static and seismic conditions", Can. Geotech. J., 57(6), 815-827. https://doi.org/10.1139/cgj-2019-0240
- Singh, V.P. and Babu, G.S. (2010), "2D numerical simulations of soil nail walls", Geotech. Geological Eng., 28(4), 299-309. https://doi.org/10.1007/s10706-009-9292-x.
- Sivakumar Babu, G.L., Srinivasa Murthy, B.R. and Srinivas, A. (2002), "Analysis of construction factors influencing the behaviour of soil-nailed earth retaining walls", Proceedings of the Institution of Civil Engineers-Ground Improvement, 6(3), 137-143. https://doi.org/10.1680/grim.2002.6.3.137.
- Smith, I.M. and Su, N. (1997), "Three-dimensional FE analysis of a nailed soil wall curved in plan", Int. J. Numer. Anal. Method. Geomech., 21(9), 583-597. https://doi.org/10.1002/(SICI)1096-9853(199709)21:9.
- Tavakoli, H., Kutanaei, S.S. and Hosseini, S.H. (2019), "Assessment of seismic amplification factor of excavation with support system", Earthq. Eng. Eng. Vib., 18(3), 555-566. https://doi.org/10.1007/s11803-019-0521-x
- Tiznado, J.C. and Rodriguez-Roa, F. (2011), "Seismic lateral movement prediction for gravity retaining walls on granular soils", Soil Dyn. Earthq. Eng., 31(3), 391-400. https://doi.org/10.1016/j.soildyn.2010.09.008
- Unterreiner, P., Benhamida, B. and Schlosser, F. (1997), "Finite element modelling of the construction of a full-scale expexperimental soil-nailed wall. French National Research Project CLOUTERRE", Proceedings of the Institution of Civil Engineers-Ground Improvement, 1(1), 1-8. https://doi.org/10.1680/gi.1997.010101
- Wadi, A., Pettersson, L. and Raid, K. (2018), "FEM simulation of a full-scale loading-to-failure test of a corrugated steel culvert", Steel Compos. Struct., 27(2), 217-227. https://doi.org/10.12989/scs.2018.27.2.217.
- Yin, J.H. and Zhou, W.H. (2009), "Influence of grouting pressure and overburden stress on the interface resistance of a soil nail", J. Geotech. Geoenviron. Eng., 135(9), 1198-1208. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000045.
- Zhang, M., Song, E. and Chen, Z. (1999), "Ground movement analysis of soil nailing construction by three-dimensional (3-D) finite element modeling (FEM)", Comput. Geotech., 25(4), 191-204. https://doi.org/10.1016/S0266-352X(99)00025-7.