DOI QR코드

DOI QR Code

Shakedown analysis of trusses under cyclic thermal load with temperature-dependent yield stress

  • Leu, S.Y. (Department of Aviation Mechanical Engineering, China University of Science and Technology) ;
  • Chen, Y.H. (Department of Aviation Mechanical Engineering, China University of Science and Technology) ;
  • Liao, K.C. (Department of Biomechatronics Engineering, National Taiwan University)
  • 투고 : 2020.12.05
  • 심사 : 2021.04.03
  • 발행 : 2021.06.25

초록

The paper aims to revisit shakedown analysis involving temperature-dependent yield stress. Formulations and numerical implementations are focused on truss structures subjected to cyclic thermal and constant mechanical loads. In particular, a systematic approach based on the duality relationship of l-norm and l1-norm is established to state the dual formulations for static and kinematic shakedown analysis of truss structures. Illustrative examples are involved statically indeterminate three-bar and five-bar trusses, respectively. Numerical effort is made to acquire shakedown limit temperature by using the linprog function provided by MATLAB. Furthermore, the finite-element analysis using ABAQUS is also performed for rigorous comparisons.

키워드

과제정보

The authors gratefully acknowledges the financial support by the Ministry of Science and Technology in Taiwan.

참고문헌

  1. Boyd, S. and Vandenberghe, L. (2004), Convex Optimization, Cambridge University Press, Cambridge, UK.
  2. Brickstad, B. and Josefson, B.L. (1998), "A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes", Int. J. Press. Ves. Pip., 75(1), 11-25. https://doi.org/10.1016/S0308-0161(97)00117-8.
  3. Cazzani, A., Control, R. and Corradi, L. (1989), "On the evaluation of the shakedown boundary for temperaturedependent elastic properties", Advances in Plasticity 1989: Proceedings of Plasticity '89, the Second International Symposium on Plasticity and Its Current Applications, Pergamon, New York, NY, USA.
  4. Chen, H. (2010), "Lower and upper bound shakedown analysis of structures with temperature-dependent yield stress", J. Press. Ves. Technol., 132(1), 011202-1-011202-8. https://doi.org/10.1115/1.4000369.
  5. Curtis, H.D. (1997), Fundamentals of Aircraft Structural Analysis, McGraw-Hill, Boston, USA.
  6. Dar, M.A., Subramanian, N., Dar, A.R. and Raju, J. (2017), "Rehabilitation of a distressed steel roof truss-a study", Struct. Eng. Mech., 62(5), 567-576. https://doi.org/10.12989/sem.2017.62.5.567.
  7. Drucker, D.C. (1959), "A definition of stable inelastic material", J. Appl. Mech., 81, 101-106. https://doi.org/10.1115/1.4011929
  8. Du, S., Liu, H., Chen, S. and Lian, J. (1995), "Shakedown analysis of elasto-plastic structures subjected to external loading and temperature variation", Appl. Math. Mech., 16(8), 791-799. https://doi.org/10.1007/BF02453403.
  9. Giambanco, F. and Palizzolo, L. (1994), "Bounds on plastic deformations of trusses", Int. J. Solid. Struct., 31(6), 785-795. https://doi.org/10.1016/0020-7683(94)90077-9.
  10. Goffman, C. and Pedrick, G. (1965), Course in Functional Analysis, Prentice-Hall, New Jersey, USA.
  11. Gross, D., Schroder, J., Bonet, J., Hauger, W. and Wall, A.W. (2011), "Tension and compression in bars", Eng. Mech., 2, 5-46.
  12. Heitzer, M. (2004), "Statical shakedown analysis with temperature-dependent yield condition", Commun. Numer. Meth. Eng., 20(11), 835-844. https://doi.org/10.1002/cnm.713.
  13. Karadeniz, S. and Ponter, A.R.S. (1984), "A linear programming upper bound approach to the shakedown limit of thin shells subjected to variable thermal loading", J. Strain Anal. Eng. Des., 19(4), 221-230. https://doi.org/10.1243/03093247V194221.
  14. Konig, J.A. (1979a), "On the incremental collapse criterion accounting for temperature dependence of yield point stress", Arch. Mech., 31(3), 317-325.
  15. Konig, J.A. (1979b), "On upper bounds to shakedown loads", J. Appl. Math. Mech., 59(8), 349-354. https://doi.org/10.1002/zamm.19790590803.
  16. Konig, J.A. (1987), Shakedown of Elastic-plastic Structure, Elsevier, Amsterdam, The Netherlands.
  17. Leu, S.Y. and Li, J.S. (2015), "Shakedown analysis of truss structures with nonlinear kinematic hardening", Int. J. Mech. Sci., 103(11), 172-180. https://doi.org/10.1016/j.ijmecsci.2015.09.003.
  18. Li, T., Chen, H., Chen, W. and Ure, J. (2011), "On the shakedown analysis of welded pipes", Int. J. Press. Ves. Pip., 88(8-9), 301-310. https://doi.org/10.1016/j.ijpvp.2011.06.005.
  19. Li, W., Zhang, X., Kou, H., Wang, R. and Fang, D. (2016), "Theoretical prediction of temperature dependent yield strength for metallic materials", Int. J. Mech. Sci., 105(1), 273-278. https://doi.org/10.1016/j.ijmecsci.2015.11.017.
  20. Lin, T., Huang, C.W. and Yang, Y.B. (2012), "Inelastic thermal analysis of preloaded steel trusses undergoing heating and cooling stages", J. Eng. Mech., 138(5), 468-477. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000343.
  21. MATLAB (2019), http://www.mathworks.com/help/optim
  22. Nie, R., He, B., Yan, S. and Ma, X. (2020), "Optimization design method for mesh reflector antennas considering the truss deformation and thermal effects", Eng. Struct., 208(1), 110253. https://doi.org/10.1016/j.engstruct.2020.110253.
  23. Oueslati, A. and de Saxce G. (2009), "Static shakedown theorem for solids with temperature-dependent elastic modulus", Limit States of Materials and Structures: Direct Methods, Springer, New York, NY, USA.
  24. Peng, H., Liu, Y. and Chen, H. (2019), "Shakedown analysis of elastic-plastic structures considering the effect of temperature on yield strength: theory, method and applications", Eur. J. Mech.-A/Solid., 73(1-2), 318-330. https://doi.org/10.1016/j.euromechsol.2018.09.011.
  25. Peng, H., Liu, Y., Chen, H. and Shen, J. (2018), "Shakedown analysis of engineering structures under multiple variable mechanical and thermal loads using the stress compensation method", Int. J. Mech. Sci., 140(5), 361-375. https://doi.org/10.1016/j.ijmecsci.2018.03.020.
  26. Pham Duc Chinh Institute of Mechanics, 224 Doi can, Hanoi, Vietnam.
  27. Pham, D.C. (1997), "Shakedown analysis for trusses and frames", J. Appl Mech., 64(2), 415-419. https://doi.org/10.1115/1.2787324.
  28. Prager, W. (1956), "Shakedown in elastic-plastic media subjected to cycles of load and temperature", Proceedings of Symposium Sulla Plasticita Nella Scienza delle Costruzioni, Bologna, September.
  29. Simon, J.W., Chen, M. and Weichert, D. (2012), "Shakedown analysis combined with the problem of heat conduction", J. Press. Ves. Technol., 134(2), 021206/1-021206/8. https://doi.org/10.1115/1.4004868.
  30. Spiliopoulos, K.V. and Panagiotou, K.D. (2012), "A direct method to predict cyclic steady states of elastoplastic structures", Comput. Meth. Appl. Mech. Eng., 223-224(6), 186-198. https://doi.org/10.1016/j.cma.2012.03.004.
  31. Spiliopoulos, K.V. and Panagiotou, K.D. (2015), "A numerical procedure for the shakedown analysis of structures under cyclic thermomechanical loading", Arch. Appl. Mech., 85(9), 1499-1511. https://doi.org/10.1007/s00419-014-0947-6.
  32. Spiliopoulos, K.V. and Panagiotou, K.D. (2017), "An enhanced numerical procedure for the shakedown analysis in multidimensional loading domains", Comput. Struct., 193(12), 155-171. https://doi.org/10.1016/j.compstruc.2017.08.008.
  33. Surmiri, A., Nayebi, A., Rokhgireh, H. and Varvani-Farahani, A. (2020), "Anisotropic continuum damage analysis of thin-walled pressure vessels under cyclic thermo-mechanical loading", Struct. Eng. Mech., 75(1), 101-108. https://doi.org/10.12989/sem.2020.75.1.101.
  34. Vu, D.K. and Staat, M. (2007), "Shakedown analysis of structures made of materials with temperature-dependent yield stress", Int. J. Solid. Struct., 44(13), 4524-4540. https://doi.org/10.1016/j.ijsolstr.2006.11.038.
  35. Wang J., Yu H.S. and Li H.X. (2010), "Shakedown analysis of soil materials based on an incremental approach", International Conference on Computing in Civil and Building Engineering, Nottingham, UK, January.
  36. Yan, A.M. and Nguyen-Dang, H. (2001), "Kinematical shakedown analysis with temperature-dependent yield stress", Int. J. Numer. Meth. Eng., 50(5), 1145-1168. https://doi.org/10.1002/1097-0207(20010220)50:5<1145::AID-NME70>3.0.CO;2-C.
  37. Yang, W.H. (1991), "On generalized Holder inequality", Nonlin. Anal.: Theor. Meth. Appl., 16(5), 489-498. https://doi.org/10.1016/0362-546X(91)90072-9.
  38. Yang, W.H. (1993), "Large deformation of structures by sequential limit analysis", Int. J. Solid. Struct., 30(7), 1001-1013. https://doi.org/10.1016/0020-7683(93)90023-Z.