참고문헌
- Attaway, S.W., Heinstein, M.W. and Swegle, J.W. (1994), "Coupling of smooth particle hydrodynamics with the finite element method", Nucl. Eng. Des., 150, 199-205. https://doi.org/10.1016/0029-5493(94)90136-8.
- Babuska, I. and Melenk, J.M. (1997), "The partition of unity method", Int. J. Numer. Meth. Eng., 40, 727-758. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N.
- Belaasilia, Y., Timesli, A., Braikat, B. and Jamal, M. (2017), "A numerical mesh-free model for elasto-plastic contact problems", Eng. Anal. Bound. Elem., 82, 168-78. https://doi.org/10.1016/j.enganabound.2017.05.010.
- Belytschko, T. and Organ, D. (1995), "A coupled _nite elementelement-free Galerkin method", Comput. Mech., 17, 186-195. https://doi.org/10.1007/BF00364080.
- Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205.
- Belytschko, T., Organ, D. and Krongauz, Y. (1995), "A coupled finite element-element free Galerkin method", Comput. Mech., 17, 186-195. https://doi.org/10.1007/BF00364080.
- Chen, M. and Ling, L. (2019), "Kernel-based meshless collocation methods for solving coupled bulk-surface partial differential equations", J. Sci. Comput., 81, 375-391. https://doi.org/10.1007/s10915-019-01020-2.
- Chen, T. and Raju, I.S. (2003), "A coupled finite element and Meshless local Petrov-Galerkin method for twodimensional potential problems", Comput. Meth. Appl. Mech. Eng., 192, 4533-4550. https://doi.org/10.1016/S0045-7825(03)00421-3.
- Cheng, J.Q., Lee, H.P. and Li, H. (2004), "Development of a meshless finite mixture (MFM) method", Struct. Eng. Mech., 17, 671-690. http://doi.org/10.12989/sem.2004.17.5.671.
- Daux, C., Moes, N., Dolbow, J., Sukumar, N. and Belytschko, T. (1992), "Arbitrary branched and intersecting cracks with the extended finite element method", Int. J. Numer. Meth. Eng., 48, 1741-1760. https://doi.org/10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L.
- Dilts, G.A. (1999), "Moving-least-square-particle hydrodynamics I: Consistency and stability", Int. J. Numer. Meth. Eng., 44, 1115-1155. https://doi.org/10.1002/(SICI)1097-0207(19990320)44:8<1115::AID-NME547>3.0.CO;2-L.
- Dilts, G.A. (2000), "Moving-least-square-particle hydrodynamics II: Conservation and boundaries", Int. J. Numer. Meth. Eng., 48, 1503-1524. https://doi.org/10.1002/1097-0207(20000810)48:10<1503::AID-NME832>3.0.CO;2-D.
- Dolbow, J. and Belytschko, T. (1998), "An introduction to programming the meshless element free Galerkin method", Arch. Comput. Meth. Eng., 5, 207-241. https://doi.org/10.1007/BF02897874.
- Duarte, C.A.M. and Oden, J.T. (1996), "hp clouds - A meshless method to solve boundary value problems", Numer. Meth. Partial. Differ. Equ., 12, 673-705. https://doi.org/10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P
- Ferezghi, Y.S., Sohrabi, M. and Nezhad, S.M.M. (2020), "Meshless Local Petrov-Galerkin (MLPG) method for dynamic analysis of non-symmetric nanocomposite cylindrical shell", Struct. Eng. Mech., 74, 679-698. http://doi.org/10.12989/sem.2020.74.5.679.
- Fernandez-Mendez, S. and Huerta, A. (2004), "Imposing essential boundary conditions in mesh-free methods", Comput. Meth. Appl. Mech. Eng., 193, 1257-1275. https://doi.org/10.1016/j.cma.2003.12.019.
- Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics theory and application to non-spherical stars", Mon. Notices Royal Astron. Soc., 181, 375-389. https://doi.org/10.1093/mnras/181.3.375.
- Gu, Y.T. and Zhang, L.C. (2008), "Coupling of the meshfree and _nite element methods for determination of the crack tip fields", Eng. Fract. Mech., 75, 986-1004. https://doi.org/10.1016/j.engfracmech.2007.05.003.
- Hegen, D. (1996), "Element-free Galerkin methods in combination with finite element approaches", Comput. Meth. Appl. Mech. Eng., 135, 143-166. https://doi.org/10.1016/0045-7825(96)00994-2.
- Huerta, A. and Fernandez-Mendez, S. (2000), "Enrichment and coupling of the finite element and Meshless methods", Int. J. Numer. Methods Eng., 48, 1615-1636. https://doi.org/10.1002/1097-0207(20000820)48:11<1615::AID-NME883>3.0.CO;2-S.
- Jaskowiec, J. and Milewski, S. (2016), "Coupling _nite element method with meshless finite difference method in thermomechanical problems", Compt. Math. Appl., 72, 2259-2279. https://doi.org/10.1016/j.camwa.2016.08.020.
- Kanok-Nukulchai, W., Barry, W.J. and Saran-Yasoontorn, K. (2001), "Meshless formulation for shear-locking free bending elements", Struct. Eng. Mech., 11, 123-132. https://doi.org/10.12989/sem.2001.11.2.123.
- Krongauz, Y. and Belytschko, T. (1996), "Enforcement of essential boundary conditions in meshless approximations using finite elements", Comput. Meth. Appl. Mech. Eng., 131, 133-145. https://doi.org/10.1016/0045-7825(95)00954-X.
- Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput., 37, 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1.
- Li, S. and Liu, W.K. (1999), "Reproducing kernel hierarchical partition of unity, Part I-Formulation and theory", Int. J. Numer. Meth. Eng., 45, 251-288. https://doi.org/10.1002/(SICI)1097-0207(19990530)45:3<251::AID-NME583>3.0.CO;2-I.
- Liska, T. (1984), "An interpolation method for an irregular net of nodes", Int. J. Numer. Meth. Eng., 192, 1599-1612. https://doi.org/10.1002/nme.1620200905.
- Liska, T. and Orkisz, J. (1980), "The finite difference method at arbitrary irregular grids and its application in applied mechanics", Comput. Struct., 2, 83-95. https://doi.org/10.1016/0045-7949(80)90149-2.
- Liu, G.R. (2002), Mesh Free Methods: Moving Beyond the Finite Element Method, CRC press, Boca Raton, USA.
- Liu, G.R. (2003), Mesh Free Methods, C.R.C Press.
- Liu, G.R. and Gu, Y.T. (2001), "A point interpolation method for two-dimensional solids", Int. J. Numer. Meth. Eng., 50, 937-951. https://doi.org/10.1002/1097-0207(20010210)50:4<937::AIDNME62>3.0.CO;2-X.
- Liu, W.K., Jun, S. and Zhang, Y.F. (1995), "Reproducing Kernel Particle Methods", Int. J. Numer. Meth. Fluid., 20, 1081-1106. https://doi.org/10.1002/d.1650200824.
- Lucy, L.B. (1977), "A numerical approach to the testing of the fission hypothesis", Astronom. J., 82, 1013-1024. https://doi.org/10.1086/112164
- Nayroles, B., Touzot, G. and Villon, P. (1991), "The diffuse approximation", C. R. Acad. Sci., 313, 293-296.
- Nayroles, B., Touzot, G. and Villon, P. (1992), "Generalizing the finite element method: diffuse approximation and diffuse elements", Comput. Mech., 10, 307-318. https://doi.org/10.1007/BF00364252.
- Nguyen, V.P., Rabczuk, T., Bordas, S. and Duot, M. (2008), "Meshless methods: A review and computer implementation aspects", Math. Comput. Simul., 79, 763-813. https://doi.org/10.1016/j.matcom.2008.01.003.
- Niroumand, H., Mehrizi, M.E.M. and Saaly, M. (2016), "Application of mesh-free smoothed particle hydrodynamics (SPH) for study of soil behavior", Geomech. Eng., 11, 1-39. http://doi.org/10.12989/gae.2016.11.1.001.
- Orkisz, J. (1998), Handbook of Computational Solid Mechanics. Finite Difference Method (Part III), Ed. I.M. Kleiber, Springer-Verlag, Berlin.
- Orkisz, J. (1998), "Meshless finite difference method I. Basic approach", Comput. Mech., Eds, Idelson, Onate, Duorkin, iacm, CINME.
- Orkisz, J. (1998), "Meshless finite difference method II. Adaptive approach", Comput. Mech., Eds. Idelson, Onate, Duorkin, iacm, CINME.
- Peyroteo, M.M.A.P., Belinha, J., Dinis, L.M.J.S. and Jorge, R.M.N. (2019), "A new biological bone remodeling in silico model combined with advanced discretization methods", Int. J. Numer. Meth. Biomed. Eng., 35, e3196. https://doi.org/10.1002/cnm.3196.
- Rad, M.H.G., Shahabian, F. and Hosseini, S.M. (2019), "Nonlocal geometrically nonlinear dynamic analysis of nanobeam using a meshless method", Steel Compos. Struct., 32, 293-304. http://doi.org/10.12989/scs.2019.32.3.293.
- Rad, M.H.G., Shahabian, F., Mishra, B.K. and Hosseini, S.M. (2020), "Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model", Steel Compos. Struct., 35, 77-92. https://doi.org/10.12989/scs.2020.35.1.077.
- Rao, B.N. (2011), "Coupled meshfree and fractal finite element method for unbounded problems", Comput. Geotech., 38, 697-708. https://doi.org/10.1016/j.compgeo.2011.02.009.
- Rohit, G.R., Prajapati, J.M. and Patel, V.B. (2020), "Coupling of Finite Element and Meshfree Method for Structure Mechanics Application: A Review", Int. J. Comput. Meth., 17, 1850151. https://doi.org/10.1142/S0219876218501517.
- Saffah, Z., Timesli, A., Lahmam, H., Azouani, A. and Amdi, M. (2021), "New collocation path-following approach for the optimal shape parameter using Kernel method", SN Appl. Sci., 3, 249. https://doi.org/10.1007/s42452-021-04231-1.
- Shedbale, A.S., Singh, I.V. and Mishra, B.K. (2016), "A coupled FE-EFG approach for modeling crack growth in ductile materials", Fatig. Fract. Eng. Mater. Struct., 39, 1204-1225. https://doi.org/10.1111/_e.12423.
- Shedbale, A.S., Singh, I.V., Mishra, B.K. and Sharma, K. (2017), "Ductile failure modeling and simulations using coupled FE-EFG approach", Int. J. Fract., 203, 183-209. https://doi.org/10.1111/_e.12423.
- Shepard, D. (1968), "A two-dimensional interpolation function for irregularly spaced data", Proceedings of the 1968 ACM National Conference, 517-524. https://doi.org/10.1145/800186.810616.
- Strouboulis, T., Babus, I. and Copps, K. (2000), "The design and analysis of the generalized finite element method", Comput. Meth. Appl. Mech. Eng., 181, 43-69. https://doi.org/10.1002/d.1650200824.
- Timesli, A. (2020a), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., 9, 69-82. http://dx.doi.org/10.12989/anr.2020.9.2.069.
- Timesli, A. (2020b), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. http://doi.org/10.12989/cac.2020.26.1.053.
- Timesli, A. (2021a), "Optimized radius of influence domain in meshless approach for modeling of large deformation problems", Iran. J. Sci. Technol. Trans. Mech. Eng., 1-11. https://doi.org/10.1007/s40997-021-00427-3.
- Timesli, A. (2021b), "Analytical modeling of buckling behavior of porous FGM cylindrical shell embedded within an elastic foundation", Gazi Univ. J. Sci., 1-1. https://doi.org/10.35378/gujs.860783.
- Timesli, A., Braikat, B., Lahmam, H. and Zahrouni, H. (2015), "A new algorithm based on moving least square method to simulate material mixing in friction stir welding", Eng. Anal. Bound. Elem., 50, 372-380. https://doi.org/10.1016/j.enganabound.2014.09.011.
- Wang, J.G. and Liu, G.R. (2002), "On the optimal shape parameters of radial basis functions used for 2-D meshlesss methods", Comput. Meth. Appl. Mech. Eng., 191, 2611-2630. https://doi.org/10.1016/S0045-7825(01)00419-4.
- Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22, 161-182. http://doi.org/10.12989/scs.2016.22.1.161.
- Wu, Y., Choi, H.J., Li, H. and Crawford, J.E. (2013), "Concrete fragmentation modeling using coupled finite element-meshfree formulations", Interact. Multisc. Mech., 6, 173-195. http://doi.org/10.12989/imm.2013.6.2.173.
- Xiao, Y. and Wu, H. (2020), "An explicit coupled method of FEM and meshless particle method for simulating transient heat transfer process of friction stir welding", Math. Prob. Eng., 2020, ID 2574127, 16. https://doi.org/10.1155/2020/2574127.
- Zhang, X., Liu, X.H., Song, K.Z. and Lu, M.W. (2001), "Leastsquare collocation meshless method", Int. J. Numer. Meth. Eng., 51, 1089-1100. https://doi.org/10.1016/j.enganabound.2014.09.011.
- Zhang, Y., Ge, W., Tong, X. and Ye, M. (2018), "Topology optimization of structures with coupled finite element - element free galerkin method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232, 1089-1100. https://doi.org/10.1177/0954406216688716.