DOI QR코드

DOI QR Code

An improved incompatible DSQ element using free formulation approach

  • Katili, Irwan (Civil Engineering Department, Universitas Indonesia)
  • 투고 : 2020.12.07
  • 심사 : 2021.04.01
  • 발행 : 2021.06.25

초록

A formulation of a quadratic incompatible quadrilateral element, called DSQK, using a combination of free formulation approach, independent transverse shear strains, and discrete shear constraints, is described in this paper. This new element, which includes transverse shear effects and is valid for thin and thick plates, has 4 nodes and 3 DOFs per node (transverse displacement w and rotations βx and βy at the corner nodes). The couple between lower order and higher order bending energy is assumed to be zero in the DSQK element to fulfill the constant bending patch test. The independent transverse shear strain is expressed only by second derivatives of the rotations obtained from a unified and integrated kinematic relationship, constitutive law, and equilibrium equations. The validation based on individual element tests, patch tests, and convergence tests deliver good results for thin to thick plates of various geometries.

키워드

과제정보

The financial support from the Indonesian Ministry of Research and Technology (RISTEK-BRIN) through the PDUPT program (NKB-246/UN2.RST/HKP.05.00/2020) is gratefully acknowledged.

참고문헌

  1. Bathe, K.J. and Dvorkin, E.N. (1985), "A four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation", Int. J. Numer. Meth. Eng., 21, 367-383. https://doi.org/10.1002/nme.1620210213.
  2. Batoz, J.L. and Ben Tahar, M. (1982), "Evaluation of a new thin plate quadrilateral element", Int. J. Numer. Meth. Eng., 18, 1655-1678. https://doi.org/10.1002/nme.1620181106.
  3. Batoz, J.L. and Dhatt, G. (1990), Modelisation des Structures par Element Finis, Volume 2: Poutres et Plaques, Hermes, Paris, France.
  4. Batoz, J.L. and Lardeur, P. (1989), "A discrete shear triangular nine dof element for the analysis of thick to very thin plates", Int. J. Numer. Meth. Eng., 28, 533-560. https://doi.org/10.1002/nme.1620280305.
  5. Bergan, P.G. and Nygard, M.K. (1984), "Finite elements with increased freedom in choosing shape functions", Int. J. Numer. Meth. Eng., 19, 643-663. https://doi.org/10.1002/nme.1620200405.
  6. Bergan, P.G. and Wang, X. (1984), "Quadrilateral plate bending elements with shear deformations", Comput. Struct., 19, 25-34. https://doi.org/10.1016/0045-7949(84)90199-8.
  7. Chen, S. and Shang, Y. (2015), "Developments of Mindlin-Reissner plate elements", Math. Prob. Eng., 2015, Article ID 456740. http://dx.doi.org/10.1155/2015/456740.
  8. Dvorkin, E.N. and Bathe, K.J. (1984), "A continuum mechanics based four-node shell element for general non-linear analysis", Eng. Comput., 1, 77-88. https://doi.org/10.1108/eb023562.
  9. Hassan, K., Ali, E. and Tawfik, M. (2020), "Finite elements for the one variable version of Mindlin-Reissner plate", Latin Am. J. Solid. Struct., 17(6), e299. https://doi.org/10.1590/1679-78256170.
  10. Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields- part II: An extended DKQ element for thick plate bending analysis", Int. J. Numer. Meth. Eng., 36, 1885-1908. https://doi.org/10.1002/nme.1620361107.
  11. Katili, I., Aristio, R. and Setyanto, S.B. (2020), "Isogeometric collocation Method to solve the strong form equation of UI-RM plate theory", Struct. Eng. Mech., 76, 435-449. https://doi.org/10.12989/sem.2020.76.4.435.
  12. Katili, I., Batoz, J.L., Maknun, I.J. and Katili, A.M. (2021), On static and free vibration analysis of FGM plates using an efficient quadrilateral finite element based on DSPM", Compos. Struct., 261, 113514. https://doi.org/10.1016/j.compstruct.2020.113514.
  13. Katili, I., Batoz, J.L., Maknun, I.J. and Lardeur, P. (2018b), "A comparative formulation of DKMQ, DSQ and MITC4 quadrilateral plate elements with new numerical results based on s-norm tests", Comput. Struct., 204, 48-64. https://doi.org/10.1016/j.compstruc.2018.04.001.
  14. Katili, I., Batoz, J.L., Maknun, I.J., Hamdouni, A. and Millet, O. (2014), "The development of DKMQ plate bending element for thick to thin shell analysis based on Naghdi/Reissner/Mindlin shell theory", Finite Elem. Anal. Des., 100, 12-27. https://doi.org/10.1016/j.finel.2015.02.005.
  15. Katili, I., Maknun, I.J., Batoz, J.L. and Ibrahimbegovic, A. (2018a), "Shear deformable shell element DKMQ24 for composite structures", Compos. Struct., 132, 166-174. https://doi.org/10.1016/j.compstruct.2018.01.043.
  16. Katili, I., Maknun, I.J., Millet, O. and Hamdouni, A. (2015), "Application of DKMQ element for composite plate bending structures", Compos. Struct., 132, 166-174. https://doi.org/10.1016/j.compstruct.2015.04.051.
  17. Ko, Y., Lee, P.S. and Bathe, K.J. (2016), "The MITC4+ shell elements and its performance", Comput. Struct., 169, 57-68. https://doi.org/10.1016/j.compstruc.2016.03.002.
  18. Ko, Y., Lee, P.S. and Bathe, K.J. (2017), "A new MITC4+shell element", Comput. Struct., 182, 404-418. https://doi.org/10.1016/j.compstruc.2016.11.004.
  19. Lardeur, P. (1990), "Developpement et evaluation de deux nouveaux elements finis de plaques et coques composites avec influence du cisaillement transversal", Ph.D. Dissertation, UTC, Compiegne-France.
  20. Liew, K.M. and Han, J.B. (1997), "Bending analysis of simply supported shear deformable skew plates", J. Eng. Mech., 123, 214-221. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(214).
  21. MacNeal, R.H. (1982), "Derivation of element stiffness matrices by assumed strain distributions", Nucl. Eng. Des., 70, 3-12. https://doi.org/10.1016/0029-5493(82)90262-X.
  22. Mahjudin, M., Lardeur, P., Druesne, F. and Katili, I. (2016), "Stochastic finite element analysis of plates with the certain generalized stresses method", Struct. Saf., 61, 12-21. https://doi.org/10.1016/j.strusafe.2016.02.006.
  23. Maknun, I.J., Katili, I., Millet, O. and Hamdouni, A. (2016), "Application of DKMQ element for twist of thin-walled beams: comparison with Vlasov theory", Int. J. Comput. Meth. Eng. Sci. Mech., 17, 391-400. https://doi.org/10.1080/15502287.2016.1231240.
  24. Mindlin, R.D. (1951), "Influence of rotation inertia and shear on flexural motion of isotropic elastic plates", J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217
  25. Morley, L.S.D. (1963), Skew Plates and Structures, Pergamon Press, New York, USA.
  26. Razzaque, A. (1973), "Program for triangular bending elements with derivative smoothing", Int. J. Numer. Meth. Eng., 6, 333-345. https://doi.org/10.1002/nme.1620060305.
  27. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech. Eng., ASME, 12, A69-A77. https://doi.org/10.1115/1.4009435
  28. Rouzegar, J. and Abbasi, A. (2017), "A refined finite element method for bending of smart functionally graded Plates", Thin Wall. Struct., 120, 386-396. http://dx.doi.org/10.1016/j.tws.2017.09.018.
  29. Sengupta, D. (1995), "Performance study of a simple finite element in the analysis of skew rhombic plates", Comput. Struct., 54, 1173-82. https://doi.org/10.1016/0045-7949(94)00405-R.
  30. Thai, H.T., Nguyen, T.K., Vo, T.P. and Ngo, T. (2017), "A new simple shear deformation plate theory", Compos. Struct., 171, 277-285. https://doi.org/10.1016/j.compstruct.2017.03.027.
  31. Wong, F.T., Erwin, R.A. and Katili, I. (2017), "Development of the DKMQ element for buckling analysis of shear-deformable plate bending", Procedia Eng., 171, 805-812. https://doi.org/10.1016/j.proeng.2017.01.368.