Acknowledgement
This research was supported by the Clinical Trial Center of Korea University Anam Hospital (I1502411), the Korea Health Technlogy R&D Project (HI14C0748) through the Korea Health Industry Development Institute (KHIDI) by the Ministry of Health & Welfare, and the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2016R1D1A1A02937362, NRF-2018R1D1A1A09083263).
References
- El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 2001;34:257-64. https://doi.org/10.1021/ar960016n
- West JL, Halas NJ. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 2003;5:285-92. https://doi.org/10.1146/annurev.bioeng.5.011303.120723
- Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 2004;11:169-83. https://doi.org/10.1080/10717540490433895
- Jain KK. Nanotechnology-based drug delivery for cancer. Technol Cancer Res Treat 2005;4:407-16. https://doi.org/10.1177/153303460500400408
- Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003;21:41-6. https://doi.org/10.1038/nbt764
- Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 2002;13:40-6. https://doi.org/10.1016/S0958-1669(02)00282-3
- Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol 2004;22:47-52. https://doi.org/10.1038/nbt927
- Sokolov K, Aaron J, Hsu B, Nida D, Gillenwater A, Follen M, et al. Optical systems for in vivo molecular imaging of cancer. Technol Cancer Res Treat 2003;2:491-504. https://doi.org/10.1177/153303460300200602
- Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 2003;100:13549-54. https://doi.org/10.1073/pnas.2232479100
- Baek SK, Makkouk AR, Krasieva T, Sun CH, Madsen SJ, Hirschberg H. Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells. J Neurooncol 2011;104:439-48. https://doi.org/10.1007/s11060-010-0511-3
- Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006;128:2115-20. https://doi.org/10.1021/ja057254a
- El-Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 2006;239:129-35. https://doi.org/10.1016/j.canlet.2005.07.035
- Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 2008;269:57-66. https://doi.org/10.1016/j.canlet.2008.04.026
- Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 2006;114:343-7. https://doi.org/10.1016/j.jconrel.2006.06.017
- Salem AK, Searson PC, Leong KW. Multifunctional nanorods for gene delivery. Nat Mater 2003;2:668-71. https://doi.org/10.1038/nmat974
- Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 2004;49:N309-15. https://doi.org/10.1088/0031-9155/49/18/N03
- Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef-Ezra JA, Smilowitz HM. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol 2010;55:3045-59. https://doi.org/10.1088/0031-9155/55/11/004
- El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 2005;5:829-34. https://doi.org/10.1021/nl050074e
- Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, et al. Real-time vital optical imaging of precancer using antiepidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 2003;63:1999-2004.
- Li PC, Wang CR, Shieh DB, Wei CW, Liao CK, Poe C, et al. In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt Express 2008;16:18605-15. https://doi.org/10.1364/OE.16.018605
- Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 2008;26:83-90. https://doi.org/10.1038/nbt1377
- Kneipp K, Kneipp H, Kneipp J. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc Chem Res 2006;39:443-50. https://doi.org/10.1021/ar050107x
- Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006;11:812-8. https://doi.org/10.1016/j.drudis.2006.07.005
- Goel R, Shah N, Visaria R, Paciotti GF, Bischof JC. Biodistribution of TNF-alpha-coated gold nanoparticles in an in vivo model system. Nanomedicine (Lond) 2009;4:401-10. https://doi.org/10.2217/nnm.09.21
- Pirollo KF, Chang EH. Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol 2008;26:552-8. https://doi.org/10.1016/j.tibtech.2008.06.007
- de Bruin K, Ruthardt N, von Gersdorff K, Bausinger R, Wagner E, Ogris M, et al. Cellular dynamics of EGF receptor-targeted synthetic viruses. Mol Ther 2007;15:1297-305. https://doi.org/10.1038/sj.mt.6300176
- Hilgenbrink AR, Low PS. Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 2005;94:2135-46. https://doi.org/10.1002/jps.20457
- Xu L, Pirollo KF, Tang WH, Rait A, Chang EH. Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum Gene Ther 1999;10:2941-52. https://doi.org/10.1089/10430349950016357
- Dass CR, Choong PF. Selective gene delivery for cancer therapy using cationic liposomes: in vivo proof of applicability. J Control Release 2006;113:155-63. https://doi.org/10.1016/j.jconrel.2006.04.009
- Xu L, Tang WH, Huang CC, Alexander W, Xiang LM, Pirollo KF, et al. Systemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv. Mol Med 2001;7:723-34. https://doi.org/10.1007/bf03401962
- Xu L, Huang CC, Huang W, Tang WH, Rait A, Yin YZ, et al. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther 2002;1:337-46.
- Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 2008;23:217-28. https://doi.org/10.1007/s10103-007-0470-x
- Wilson BC, Patterson MS. The physics of photodynamic therapy. Phys Med Biol 1986;31:327-60. https://doi.org/10.1088/0031-9155/31/4/001
- Daniell MD, Hill JS. A history of photodynamic therapy. Aust N Z J Surg 1991;61:340-8. https://doi.org/10.1111/j.1445-2197.1991.tb00230.x
- Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem Photobiol 1992;55:145-57. https://doi.org/10.1111/j.1751-1097.1992.tb04222.x
- Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B 1997;39:1-18. https://doi.org/10.1016/S1011-1344(96)07428-3
- Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J Natl Cancer Inst 1998;90:889-905. https://doi.org/10.1093/jnci/90.12.889
- Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003;3:380-7. https://doi.org/10.1038/nrc1071
- Gold MH. Introduction to photodynamic therapy: early experience. Dermatol Clin 2007;25:1-4. https://doi.org/10.1016/j.det.2006.09.004
- Chen WR, Adams RL, Heaton S, Dickey DT, Bartels KE, Nordquist RE. Chromophore-enhanced laser-tumor tissue photothermal interaction using an 808-nm diode laser. Cancer Lett 1995;88:15-9. https://doi.org/10.1016/0304-3835(94)03609-M
- Chen WR, Adams RL, Bartels KE, Nordquist RE. Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser. Cancer Lett 1995;94:125-31. https://doi.org/10.1016/0304-3835(95)03837-M
- Jori G, Spikes JD. Photothermal sensitizers: possible use in tumor therapy. J Photochem Photobiol B 1990;6:93-101. https://doi.org/10.1016/1011-1344(90)85078-B
- Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 2003;84:4023-32. https://doi.org/10.1016/S0006-3495(03)75128-5
- Zharov VP, Galitovskaya EN, Johnson C, Kelly T. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg Med 2005;37:219-26. https://doi.org/10.1002/lsm.20223
- Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol 2006;82:412-7. https://doi.org/10.1562/2005-12-14-RA-754
- Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine (Lond) 2007;2:125-32. https://doi.org/10.2217/17435889.2.1.125
- O'Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 2004;209:171-6. https://doi.org/10.1016/j.canlet.2004.02.004
- Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005;5:709-11. https://doi.org/10.1021/nl050127s
- Hu M, Petrova H, Chen J, McLellan JM, Siekkinen AR, Marquez M, et al. Ultrafast laser studies of the photothermal properties of gold nanocages. J Phys Chem B 2006;110:1520-4. https://doi.org/10.1021/jp0571628
- Kam NW, O'Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 2005;102:11600-5. https://doi.org/10.1073/pnas.0502680102
- Prodan E, Radloff C, Halas NJ, Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science 2003;302:419-22. https://doi.org/10.1126/science.1089171
- Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 2004;3:33-40. https://doi.org/10.1177/153303460400300104
- Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol 2001;19:316-7. https://doi.org/10.1038/86684
- Yang TD, Choi W, Yoon TH, Lee KJ, Lee JS, Han SH, et al. Realtime phase-contrast imaging of photothermal treatment of head and neck squamous cell carcinoma: an in vitro study of macrophages as a vector for the delivery of gold nanoshells. J Biomed Opt 2012;17:128003. https://doi.org/10.1117/1.JBO.17.12.128003
- Yang TD, Choi W, Yoon TH, Lee KJ, Lee JS, Joo JH, et al. In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells. Biomed Opt Express 2015;7:185-93. https://doi.org/10.1364/BOE.7.000185
- Yang TD, Park K, Kim HJ, Im NR, Kim B, Kim T, et al. In vivo photothermal treatment with real-time monitoring by optical fiber-needle array. Biomed Opt Express 2017;8:3482-92. https://doi.org/10.1364/BOE.8.003482
- Valable S, Barbier EL, Bernaudin M, Roussel S, Segebarth C, Petit E, et al. In vivo MRI tracking of exogenous monocytes/macrophages targeting brain tumors in a rat model of glioma. Neuroimage 2008;40:973-83. https://doi.org/10.1016/j.neuroimage.2008.01.005
- Wu J, Yang S, Luo H, Zeng L, Ye L, Lu Y. Quantitative evaluation of monocyte transmigration into the brain following chemical opening of the blood-brain barrier in mice. Brain Res 2006;1098:79-85. https://doi.org/10.1016/j.brainres.2006.04.074
- Owen MR, Byrne HM, Lewis CE. Mathematical modelling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites. J Theor Biol 2004;226:377-91. https://doi.org/10.1016/j.jtbi.2003.09.004
- Choi MR, Stanton-Maxey KJ, Stanley JK, Levin CS, Bardhan R, Akin D, et al. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 2007;7:3759-65. https://doi.org/10.1021/nl072209h
- Dou H, Destache CJ, Morehead JR, Mosley RL, Boska MD, Kingsley J, et al. Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood 2006;108:2827-35.
- Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 2008;60:977-85. https://doi.org/10.1211/jpp.60.8.0005
- Diagaradjane P, Shetty A, Wang JC, Elliott AM, Schwartz J, Shentu S, et al. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy. Nano Lett 2008;8:1492-500. https://doi.org/10.1021/nl080496z
- Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW. Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 2007;150:552-8. https://doi.org/10.1038/sj.bjp.0707130