DOI QR코드

DOI QR Code

The Effect of Lung Volume on the Size and Volume of Pulmonary Subsolid Nodules on CT: Intraindividual Comparison between Total Lung Capacity and Tidal Volume

전산화단층촬영에서 폐 반고형결절의 크기와 용적에 호흡이 미치는 영향: 개인 내 전폐용량과 일호흡량 간 비교

  • Hyunji Lee (Department of Radiology, Severance Hospital, Yonsei University College of Medicine) ;
  • Chansik An (Department of Radiology, National Health Insurance Service Ilsan Hospital) ;
  • Seok Jong Ryu (Department of Radiology, National Health Insurance Service Ilsan Hospital)
  • 이현지 (연세대학교 의과대학 세브란스병원 영상의학과) ;
  • 안찬식 (국민건강보험공단 일산병원 영상의학과) ;
  • 유석종 (국민건강보험공단 일산병원 영상의학과)
  • Received : 2021.08.12
  • Accepted : 2021.09.11
  • Published : 2021.11.01

Abstract

Purpose To examine the effect of lung volume on the size and volume of pulmonary subsolid nodules (SSNs) measured on CT. Materials and Methods A total of 42 SSNs from 31 patients were included. CT examination was first performed at total lung capacity (TLC), and a section containing the nodule was additionally scanned at tidal volume (TV). The diameter and volume of each SSN, as well as the cross-sectional lung area containing the nodule, were measured. The significance of the changes in measurements between TLC and TV within the same individuals was evaluated. Results The lung area and the diameter and volume of SSNs decreased significantly at TV by 12.7 cm2, 0.5 mm, and 46.4 mm3 on average, respectively (p < 0.001), compared to those at TLC. Changes in lung area between TV and TLC were positively correlated with the change in SSN diameter (p = 0.027) and volume (p = 0.014). However, after correction (by considering the change in lung area), the changes in SSN diameter (p = 0.124) and volume (p = 0.062) were not significantly different. Conclusion SSN size and volume can be significantly affected by lung volume during CT scans of the same individuals.

목적 전산화단층촬영에서 호흡에 의한 폐 용적의 변화가 폐 반고형결절의 크기와 용적에 미치는 영향을 알아보고자 한다. 대상과 방법 총 31명의 환자에서 42개의 반고형결절이 연구에 포함되었다. 먼저 총 폐활량 상태에서 전산단층화촬영을 시행 받은 후, 결절이 포함된 부분만 일호흡용적 상태에서 추가로 촬영하였다. 각각의 반고형결절의 직경과 용적을 측정하였고, 전체 폐 용적은 결절의 중심이 있는 동측 폐의 단면적으로 추정하였다. 동일한 개인 내에서 총 폐활량과 일회 호흡량 간 측정값 변화의 유의성을 통계적으로 평가하였다. 결과 총 폐활량 상태와 비교하였을 때, 일회 호흡용적 상태에서 폐 단면적은 평균 12.7 cm2, 반고형결절의 직경 및 용적은 평균적으로 각각 0.5 mm와 46.4 mm3 감소하였다(p < 0.001). 총 폐활량 상태와 일호흡량 상태 간 폐 면적 변화는 반고형결절의 직경 변화(rho = 0.341; p = 0.027) 및 부피 변화(rho = 0.401; p = 0.014)와 유의한 양의 상관관계를 보였다. 그러나 폐 용적의 변화를 고려하여 보정한 후에는 반고형결절의 평균 직경과 부피가 총 폐활량 상태와 일호흡량 상태 간 유의한 차이가 없었다(각각 p = 0.062, p = 0.124). 결론 전산화단층촬영에서 측정한 반고형결절의 크기와 용적은 동일한 환자 내에서도 촬영 당시의 폐 용적에 유의한 영향을 받는다.

Keywords

References

  1. Austin JH, Garg K, Aberle D, Yankelevitz D, Kuriyama K, Lee HJ, et al. Radiologic implications of the 2011 classification of adenocarcinoma of the lung. Radiology 2013;266:62-71  https://doi.org/10.1148/radiol.12120240
  2. McWilliams A, Tammemagi MC, Mayo JR, Roberts H, Liu G, Soghrati K, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med 2013;369:910-919  https://doi.org/10.1056/NEJMoa1214726
  3. Henschke CI, Yankelevitz DF, Mirtcheva R, McGuinness G, McCauley D, Miettinen OS; ELCAP Group. CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules. AJR Am J Roentgenol 2002;178:1053-1057  https://doi.org/10.2214/ajr.178.5.1781053
  4. Yankelevitz DF, Yip R, Smith JP, Liang M, Liu Y, Xu DM, et al. CT screening for lung cancer: nonsolid nodules in baseline and annual repeat rounds. Radiology 2015;277:555-564  https://doi.org/10.1148/radiol.2015142554
  5. Larici AR, Farchione A, Franchi P, Ciliberto M, Cicchetti G, Calandriello L, et al. Lung nodules: size still matters. Eur Respir Rev 2017;26:170025 
  6. MacMahon H, Austin JH, Gamsu G, Herold CJ, Jett JR, Naidich DP, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology 2005;237:395-400  https://doi.org/10.1148/radiol.2372041887
  7. Godoy MCB, Odisio EGLC, Erasmus JJ, Chate RC, Dos Santos RS, Truong MT. Understanding lung-RADS 1.0: a case-based review. Semin Ultrasound CT MR 2018;39:260-272  https://doi.org/10.1053/j.sult.2018.03.001
  8. Revel MP, Lefort C, Bissery A, Bienvenu M, Aycard L, Chatellier G, et al. Pulmonary nodules: preliminary experience with three-dimensional evaluation. Radiology 2004;231:459-466  https://doi.org/10.1148/radiol.2312030241
  9. Revel MP, Bissery A, Bienvenu M, Aycard L, Lefort C, Frija G. Are two-dimensional CT measurements of small noncalcified pulmonary nodules reliable? Radiology 2004;231:453-458  https://doi.org/10.1148/radiol.2312030167
  10. Marten K, Auer F, Schmidt S, Kohl G, Rummeny EJ, Engelke C. Inadequacy of manual measurements compared to automated CT volumetry in assessment of treatment response of pulmonary metastases using RECIST criteria. Eur Radiol 2006;16:781-790  https://doi.org/10.1007/s00330-005-0036-x
  11. Devaraj A, van Ginneken B, Nair A, Baldwin D. Use of volumetry for lung nodule management: theory and practice. Radiology 2017;284:630-644  https://doi.org/10.1148/radiol.2017151022
  12. Goo JM, Kim KG, Gierada DS, Castro M, Bae KT. Volumetric measurements of lung nodules with multi-detector row CT: effect of changes in lung volume. Korean J Radiol 2006;7:243-248  https://doi.org/10.3348/kjr.2006.7.4.243
  13. Petkovska I, Brown MS, Goldin JG, Kim HJ, McNitt-Gray MF, Abtin FG, et al. The effect of lung volume on nodule size on CT. Acad Radiol 2007;14:476-485  https://doi.org/10.1016/j.acra.2007.01.008
  14. Song YS, Park CM. Pulmonary subsolid nodules: an overview & management guidelines. J Korean Soc Radiol 2018;78:309-320  https://doi.org/10.3348/jksr.2018.78.5.309
  15. Kakinuma R, Muramatsu Y, Kusumoto M, Tsuchida T, Tsuta K, Maeshima AM, et al. Solitary pure ground-glass nodules 5 mm or smaller: frequency of growth. Radiology 2015;276:873-882  https://doi.org/10.1148/radiol.2015141071
  16. Bankier AA, MacMahon H, Goo JM, Rubin GD, Schaefer-Prokop CM, Naidich DP. Recommendations for measuring pulmonary nodules at CT: a statement from the Fleischner Society. Radiology 2017;285:584-600  https://doi.org/10.1148/radiol.2017162894
  17. Jaffe CC. Measures of response: RECIST, WHO, and new alternatives. J Clin Oncol 2006;24:3245-3251  https://doi.org/10.1200/JCO.2006.06.5599
  18. Han D, Heuvelmans MA, Vliegenthart R, Rook M, Dorrius MD, de Jonge GJ, et al. Influence of lung nodule margin on volume- and diameter-based reader variability in CT lung cancer screening. Br J Radiol 2018;91:20170405 
  19. Scholten ET, de Hoop B, Jacobs C, van Amelsvoort-van de Vorst S, van Klaveren RJ, Oudkerk M, et al. Semiautomatic quantification of subsolid pulmonary nodules: comparison with manual measurements. PLoS One 2013;8:e80249 
  20. Heuvelmans MA, Vliegenthart R, Oudkerk M. Contributions of the European trials (European randomized screening group) in computed tomography lung cancer screening. J Thorac Imaging 2015;30:101-107  https://doi.org/10.1097/RTI.0000000000000135
  21. Wormanns D, Kohl G, Klotz E, Marheine A, Beyer F, Heindel W, et al. Volumetric measurements of pulmonary nodules at multi-row detector CT: in vivo reproducibility. Eur Radiol 2004;14:86-92  https://doi.org/10.1007/s00330-003-2132-0
  22. Kim H, Park CM, Woo S, Lee SM, Lee HJ, Yoo CG, et al. Pure and part-solid pulmonary ground-glass nodules: measurement variability of volume and mass in nodules with a solid portion less than or equal to 5 mm. Radiology 2013;269:585-593 https://doi.org/10.1148/radiol.13121849