DOI QR코드

DOI QR Code

Utility of the 16-cm Axial Volume Scan Technique for Coronary Artery Calcium Scoring on Non-Enhanced Chest CT: A Prospective Pilot Study

비 조영증강 흉부 CT에서 관상동맥 칼슘스코어 측정을 위한 16 cm 축상 촬영 기법의 유용성: 전향적 탐색적 연구

  • So Jung Ki (Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Chul Hwan Park (Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Kyunghwa Han (Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine) ;
  • Jae Min Shin (Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Ji Young Kim (Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Tae Hoon Kim (Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine)
  • 기소정 (연세대학교 의과대학 강남세브란스병원 영상의학과) ;
  • 박철환 (연세대학교 의과대학 강남세브란스병원 영상의학과) ;
  • 한경화 (연세대학교 의과대학 세브란스병원 영상의학과) ;
  • 신재민 (연세대학교 의과대학 강남세브란스병원 영상의학과) ;
  • 김지영 (연세대학교 의과대학 강남세브란스병원 영상의학과) ;
  • 김태훈 (연세대학교 의과대학 강남세브란스병원 영상의학과)
  • Received : 2020.08.27
  • Accepted : 2021.04.24
  • Published : 2021.11.01

Abstract

Purpose This study aimed to evaluate the utility of the 16-cm axial volume scan technique for calculating the coronary artery calcium score (CACS) using non-enhanced chest CT. Materials and Methods This study prospectively enrolled 20 participants who underwent both, non-enhanced chest CT (16-cm-coverage axial volume scan technique) and calcium-score CT, with the same parameters, differing only in slice thickness (in non-enhanced chest CT = 0.625, 1.25, 2.5 mm; in calcium score CT = 2.5 mm). The CACS was calculated using the conventional Agatston method. The difference between the CACS obtained from the two CT scans was compared, and the degree of agreement for the clinical significance of the CACS was confirmed through sectional analysis. Each calcified lesion was classified by location and size, and a one-to-one comparison of non-contrast-enhanced chest CT and calcium score CT was performed. Results The correlation coefficients of the CACS obtained from the two CT scans for slice thickness of 2.5, 1.25, and 0.625 mm were 0.9850, 0.9688, and 0.9834, respectively. The mean differences between the CACS were -21.4% at 0.625 mm, -39.4% at 1.25 mm, and -76.2% at 2.5 mm slice thicknesses. Sectional analysis revealed that 16 (80%), 16 (80%), and 13 (65%) patients showed agreement for the degree of coronary artery disease at each slice interval, respectively. Inter-reader agreement was high for each slice interval. The 0.625 mm CT showed the highest sensitivity for detecting calcified lesions. Conclusion The values in the non-contrast-enhanced chest CT, using the 16-cm axial volume scan technique, were similar to those obtained using the CACS in the calcium score CT, at 0.625 mm slice thickness without electrocardiogram gating. This can ultimately help predict cardiovascular risk without additional radiation exposure.

목적 관상동맥 칼슘스코어(coronary artery calcium score; 이하 CACS)를 측정하는 데 있어 비 조영증강 흉부 CT에서 16 cm 축상 촬영 기법의 유용성을 알아보고자 하였다. 대상과 방법 20명의 환자를 대상으로 16 cm 축상 촬영 기법을 이용한 비 조영증강 흉부 CT와 칼슘 스코어 CT를 전향적으로 시행하였다. 흉부 CT는 세 가지 절편 두께(0.625, 1.25, 2.5 mm)로 재구성하여, Agatston 방법을 통해 관상동맥 칼슘스코어를 측정하였다. 다양한 절편 두께의 비 조영증강 흉부 CT와 칼슘스코어 CT의 관상동맥 칼슘스코어를 비교하고, 단면 분석을 통해 CACS의 임상적 중요성에 대한 일치를 확인하였다. 또한 각각의 석회화 병변들을 위치와 크기로 나누어 비 조영증강 흉부 CT와 칼슘스코어 CT에서 일대일 비교를 시행하였다. 결과 2.5, 1.25, 0.625 mm 절편 두께의 흉부 CT와 칼슘스코어 CT의 CACS 상관 계수는 각각 0.9850, 0.9688, 0.9834였다. 흉부 CT와 칼슘스코어 CT 간의 CACS 차이는 0.625 mm에서 -21.4%, 1.25 mm에서 -39.4%, 2.5 mm 절편 두께에서 -76.2%였다. CACS 구간별 분석에서 절편 두께별로 16명(80%, 0.625 mm), 16명(80%, 1.25 mm), 13명(65%, 2.5 mm)의 환자가 관상 동맥 질환의 위험도 구간이 일치하였다. 관찰자 간 일치도는 모든 절편 간격에서 높게 나타났다. 세 절편 두께 중에서는 0.625 mm CT에서 석회화 병변에 대한 민감도가 가장 높았다. 결론 16 cm 축상 촬영 기법을 이용한 비 조영증강 흉부 CT에서 electrocardiogram 동기화 없이도, 0.625 mm 절편 간격에서 칼슘스코어 CT에서의 CACS와의 유사한 값을 얻을 수 있었다. 이를 통해 추가 방사선 노출 없이, 심혈관 질환 위험을 예측하는 데 도움이 될 수 있다.

Keywords

References

  1. Rumberger JA, Brundage BH, Rader DJ, Kondos G. Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin Proc 1999;74:243-252 https://doi.org/10.4065/74.3.243
  2. Budoff MJ, Shaw LJ, Liu ST, Weinstein SR, Mosler TP, Tseng PH, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol 2007;49:1860-1870 https://doi.org/10.1016/j.jacc.2006.10.079
  3. Polonsky TS, McClelland RL, Jorgensen NW, Bild DE, Burke GL, Guerci AD, et al. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA 2010;303:1610-1616 https://doi.org/10.1001/jama.2010.461
  4. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990;15:827-832 https://doi.org/10.1016/0735-1097(90)90282-T
  5. Callister TQ, Cooil B, Raya SP, Lippolis NJ, Russo DJ, Raggi P. Coronary artery disease: improved reproducibility of calcium scoring with an electron-beam CT volumetric method. Radiology 1998;208:807-814 https://doi.org/10.1148/radiology.208.3.9722864
  6. Hong C, Becker CR, Schoepf UJ, Ohnesorge B, Bruening R, Reiser MF. Coronary artery calcium: absolute quantification in nonenhanced and contrast-enhanced multi-detector row CT studies. Radiology 2002;223:474-480 https://doi.org/10.1148/radiol.2232010919
  7. Budoff MJ, Nasir K, Kinney GL, Hokanson JE, Barr RG, Steiner R, et al. Coronary artery and thoracic calcium on noncontrast thoracic CT scans: comparison of ungated and gated examinations in patients from the COPD Gene cohort. J Cardiovasc Comput Tomogr 2011;5:113-118 https://doi.org/10.1016/j.jcct.2010.11.002
  8. Kim SM, Chung MJ, Lee KS, Choe YH, Yi CA, Choe BK. Coronary calcium screening using low-dose lung cancer screening: effectiveness of MDCT with retrospective reconstruction. AJR Am J Roentgenol 2008;190:917-922 https://doi.org/10.2214/AJR.07.2979
  9. Jacobs PC, Isgum I, Gondrie MJ, Mali WP, van Ginneken B, Prokop M, et al. Coronary artery calcification scoring in low-dose ungated CT screening for lung cancer: interscan agreement. AJR Am J Roentgenol 2010;194:1244-1249 https://doi.org/10.2214/AJR.09.3047
  10. Hecht HS, Cronin P, Blaha MJ, Budoff MJ, Kazerooni EA, Narula J, et al. 2016 SCCT/STR guidelines for coronary artery calcium scoring of noncontrast noncardiac chest CT scans: a report of the Society of Cardiovascular Computed Tomography and Society of Thoracic Radiology. J Thorac Imaging 2017;32:W54-W66 https://doi.org/10.1097/RTI.0000000000000287
  11. Rybicki FJ, Otero HJ, Steigner ML, Vorobiof G, Nallamshetty L, Mitsouras D, et al. Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 2008;24:535-546 https://doi.org/10.1007/s10554-008-9308-2
  12. Qin J, Liu LY, Fang Y, Zhu JM, Wu Z, Zhu KS, et al. 320-detector CT coronary angiography with prospective and retrospective electrocardiogram gating in a single heartbeat: comparison of image quality and radiation dose. Br J Radiol 2012;85:945-951 https://doi.org/10.1259/bjr/29901700
  13. Azour L, Kadoch MA, Ward TJ, Eber CD, Jacobi AH. Estimation of cardiovascular risk on routine chest CT: ordinal coronary artery calcium scoring as an accurate predictor of Agatston score ranges. J Cardiovasc Comput Tomogr 2017;11:8-15 https://doi.org/10.1016/j.jcct.2016.10.001
  14. Einstein AJ, Johnson LL, Bokhari S, Son J, Thompson RC, Bateman TM, et al. Agreement of visual estimation of coronary artery calcium from low-dose CT attenuation correction scans in hybrid PET/CT and SPECT/CT with standard Agatston score. J Am Coll Cardiol 2010;56:1914-1921 https://doi.org/10.1016/j.jacc.2010.05.057
  15. Vehmas T. Visually scored calcifications in thoracic arteries predict death: follow-up study after lung cancer CT screening. Acta Radiol 2012;53:643-647 https://doi.org/10.1258/ar.2012.120247
  16. Chiles C, Duan F, Gladish GW, Ravenel JG, Baginski SG, Snyder BS, et al. Association of coronary artery calcification and mortality in the National Lung Screening Trial: a comparison of three scoring methods. Radiology 2015;276:82-90 https://doi.org/10.1148/radiol.15142062
  17. Chen Y, Hu Z, Li M, Jia Y, He T, Liu Z, et al. Comparison of nongated chest CT and dedicated calcium scoring CT for coronary calcium quantification using a 256-dector row CT scanner. Acad Radiol 2019;26:e267-e274 https://doi.org/10.1016/j.acra.2018.12.005
  18. Kalisz K, Buethe J, Saboo SS, Abbara S, Halliburton S, Rajiah P. Artifacts at cardiac CT: physics and solutions. Radiographics 2016;36:2064-2083 https://doi.org/10.1148/rg.2016160079
  19. Bielak LF, Kaufmann RB, Moll PP, McCollough CH, Schwartz RS, Sheedy PF. Small lesions in the heart identified at electron beam CT: calcification or noise? Radiology 1994;192:631-636 https://doi.org/10.1148/radiology.192.3.8058926
  20. Keelan PC, Bielak LF, Ashai K, Jamjoum LS, Denktas AE, Rumberger JA, et al. Long-term prognostic value of coronary calcification detected by electron-beam computed tomography in patients undergoing coronary angiography. Circulation 2001;104:412-417 https://doi.org/10.1161/hc2901.093112
  21. Kennedy J, Shavelle R, Wang S, Budoff M, Detrano RC. Coronary calcium and standard risk factors in symptomatic patients referred for coronary angiography. Am Heart J 1998;135:696-702 https://doi.org/10.1016/S0002-8703(98)70288-1
  22. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 2003;228:826-833 https://doi.org/10.1148/radiol.2283021006