DOI QR코드

DOI QR Code

뇌 자기공명영상 뇌용적 분석 소프트웨어의 임상적 적용에 대한 전문가 의견과 권고안

Expert Opinions and Recommendations for the Clinical Use of Quantitative Analysis Software for MRI-Based Brain Volumetry

  • 투고 : 2020.10.07
  • 심사 : 2021.01.21
  • 발행 : 2021.09.01

초록

치매를 비롯한 퇴행성 신경 질환의 초기 진단에 자기공명영상을 이용한 뇌 위축 평가와 정량적 용적 분석이 중요하다. 뇌 위축의 시각적 평가는 주관적으로 평가자에 따라 다른 결과를 보여주기 때문에, 객관적인 결과를 제공하면서 임상 적용도 가능한 소프트웨어의 수요와 개발이 늘어나고 있다. 이러한 임상용 소프트웨어의 실제 임상 적용은 영상 검사의 표준화가 선행되어야 하고, 개발된 소프트웨어의 검증이 반드시 필요하다. 따라서 대한신경두경부영상의학회는 뇌용적 분석 임상용 소프트웨어의 임상적 활용에 대한 의견을 제시하기 위해 전문위원회를 구성하고 현재까지 발표된 연구를 정리하였다. 그리고, 정량화 분석을 위한 영상 검사의 표준화 및 소프트웨어의 임상 적용에 대한 전문가 의견을 제시하기 위하여 공동 작업을 수행하였다. 본 종설에서는 뇌 자기공명영상의 정량화 분석의 필요성 및 배경, 정량화 분석을 위한 임상용 소프트웨어의 소개 및 기존의 표준품(reference standard)과의 진단능 비교, 영상 획득의 표준화, 분석 및 평가의 표준화, 소프트웨어의 임상 적용에 대한 전문가 의견, 제한점 및 대처 방법 등 대한신경두경부영상의학회의 전문가 권고안을 소개하는 것이 목적이다.

The objective assessment of atrophy and the measurement of brain volume is important in the early diagnosis of dementia and neurodegenerative diseases. Recently, several MR-based volumetry software have been developed. For their clinical application, several issues arise, including the standardization of image acquisition and their validation of software. Additionally, it is important to highlight the diagnostic performance of the volumetry software based on expert opinions. We instituted a task force within the Korean Society of Neuroradiology to develop guidelines for the clinical use of MR-based brain volumetry software. In this review, we introduce the commercially available software and compare their diagnostic performances. We suggest the need for a standard protocol for image acquisition, the validation of the software, and evaluations of the limitations of the software related to clinical practice. We present recommendations for the clinical applications of commercially available software for volumetry based on the expert opinions of the Korean Society of Neuroradiology.

키워드

과제정보

KSNR Taskforce on degenerative disease members are as following in alphabetical order: Sung Tae Kim, MD (Sungkyunkwan University School of Medicine), Seul Kee Kim (Chonnam National University Medical School), Ji Hoon Kim, MD (Seoul National University College of Medicine), Mina Park (Yonsei University College of Medicine), Sun Won Park, MD (Seoul National University College of Medicine), Sung Jun Ahn (Yonsei University College of Medicine), Kyung Mi Lee (Kyung Hee University College of Medicine), Geon-Ho Jahng (Kyung Hee University Hospital at Gangdong, College of Medicine), Jinhee Jang (College of Medicine, Catholic University of Korea), Chi-Hoon Choi (Chungbuk National University College of Medicine), Hyun Seok Choi (Yonsei University College of Medicine). The authors sincerely thank Sam-Soo Kim Kim, MD and Kook-Jin Ahn MD for their most valuable advice and support in developing recommendations.

참고문헌

  1. Jack CR Jr. Alzheimer disease: new concepts on its neurobiology and the clinical role imaging will play. Radiology 2012;263:344-361 https://doi.org/10.1148/radiol.12110433
  2. Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:257-262 https://doi.org/10.1016/j.jalz.2011.03.004
  3. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:263-269 https://doi.org/10.1016/j.jalz.2011.03.005
  4. Park M, Moon WJ. Structural MR imaging in the diagnosis of Alzheimer's disease and other neurodegenerative dementia: current imaging approach and future perspectives. Korean J Radiol 2016;17:827-845 https://doi.org/10.3348/kjr.2016.17.6.827
  5. Cavallin L, Loken K, Engedal K, Oksengard AR, Wahlund LO, Bronge L, et al. Overtime reliability of medial temporal lobe atrophy rating in a clinical setting. Acta Radiol 2012;53:318-323 https://doi.org/10.1258/ar.2012.110552
  6. Brewer JB, Magda S, Airriess C, Smith ME. Fully-automated quantification of regional brain volumes for improved detection of focal atrophy in Alzheimer disease. AJNR Am J Neuroradiol 2009;30:578-580 https://doi.org/10.3174/ajnr.A1402
  7. Tanpitukpongse TP, Mazurowski MA, Ikhena J, Petrella JR; Alzheimer's Disease Neuroimaging Initiative. Predictive utility of marketed volumetric software tools in subjects at risk for Alzheimer disease: do regions outside the hippocampus matter? AJNR Am J Neuroradiol 2017;38:546-552 https://doi.org/10.3174/ajnr.A5061
  8. Wang C, Beadnall HN, Hatton SN, Bader G, Tomic D, Silva DG, et al. Automated brain volumetrics in multiple sclerosis: a step closer to clinical application. J Neurol Neurosurg Psychiatry 2016;87:754-757 https://doi.org/10.1136/jnnp-2015-312304
  9. Louis S, Morita-Sherman M, Jones S, Vegh D, Bingaman W, Blumcke I, et al. Hippocampal sclerosis detection with NeuroQuant compared with neuroradiologists. AJNR Am J Neuroradiol 2020;41:591-597 https://doi.org/10.3174/ajnr.A6454
  10. Guo C, Ferreira D, Fink K, Westman E, Granberg T. Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis. Eur Radiol 2019;29:1355-1364 https://doi.org/10.1007/s00330-018-5710-x
  11. Storelli L, Rocca MA, Pagani E, Van Hecke W, Horsfield MA, De Stefano N, et al. Measurement of whole-brain and gray matter atrophy in multiple sclerosis: assessment with MR imaging. Radiology 2018;288:554-564 https://doi.org/10.1148/radiol.2018172468
  12. Ross DE, Ochs AL, Tate DF, Tokac U, Seabaugh J, Abildskov TJ, et al. High correlations between MRI brain volume measurements based on NeuroQuant® and FreeSurfer. Psychiatry Res Neuroimaging 2018;278:69-76 https://doi.org/10.1016/j.pscychresns.2018.05.007
  13. Chung J, Kim H, Moon Y, Moon WJ. Comparison of vendor-provided volumetry software and NeuroQuant using 3D T1-weighted images in subjects with cognitive impairment: how large is the inter-method discrepancy? Investig Magn Reson Imaging 2020;24:76-84 https://doi.org/10.13104/imri.2020.24.2.76
  14. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. Neuroimage 2012;62:782-790 https://doi.org/10.1016/j.neuroimage.2011.09.015
  15. Fischl B. FreeSurfer. Neuroimage 2012;62:774-781 https://doi.org/10.1016/j.neuroimage.2012.01.021
  16. Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26:839-851 https://doi.org/10.1016/j.neuroimage.2005.02.018
  17. Petrella JR. Neuroimaging and the search for a cure for Alzheimer disease. Radiology 2013;269:671-691 https://doi.org/10.1148/radiol.13122503
  18. Ochs AL, Ross DE, Zannoni MD, Abildskov TJ, Bigler ED; Alzheimer's Disease Neuroimaging Initiative. Comparison of automated brain volume measures obtained with NeuroQuant® and FreeSurfer. J Neuroimaging 2015;25:721-727 https://doi.org/10.1111/jon.12229
  19. Reid MW, Hannemann NP, York GE, Ritter JL, Kini JA, Lewis JD, et al. Comparing two processing pipelines to measure subcortical and cortical volumes in patients with and without mild traumatic brain injury. J Neuroimaging 2017;27:365-371 https://doi.org/10.1111/jon.12431
  20. Persson K, Barca ML, Cavallin L, Braekhus A, Knapskog AB, Selbaek G, et al. Comparison of automated volumetry of the hippocampus using NeuroQuant® and visual assessment of the medial temporal lobe in Alzheimer's disease. Acta Radiol 2018;59:997-1001 https://doi.org/10.1177/0284185117743778
  21. Persson K, Bohbot VD, Bogdanovic N, Selbaek G, Braekhus A, Engedal K. Finding of increased caudate nucleus in patients with Alzheimer's disease. Acta Neurol Scand 2018;137:224-232 https://doi.org/10.1111/ane.12800
  22. Persson K, Selbaek G, Braekhus A, Beyer M, Barca M, Engedal K. Fully automated structural MRI of the brain in clinical dementia workup. Acta Radiol 2017;58:740-747 https://doi.org/10.1177/0284185116669874
  23. Ross DE, Seabaugh J, Cooper L, Seabaugh J. NeuroQuant® and NeuroGage® reveal effects of traumatic brain injury on brain volume. Brain Inj 2018;32:1437-1441 https://doi.org/10.1080/02699052.2018.1489980
  24. Eggins PS, Hatton SN, Hermens DF, Hickie IB, Lagopoulos J. Subcortical volumetric differences between clinical stages of young people with affective and psychotic disorders. Psychiatry Res Neuroimaging 2018;271:8-16 https://doi.org/10.1016/j.pscychresns.2017.11.015
  25. Ahdidan J, Raji CA, DeYoe EA, Mathis J, Noe KO, Rimestad J, et al. Quantitative neuroimaging software for clinical assessment of hippocampal volumes on MR imaging. J Alzheimers Dis 2016;49:723-732 https://doi.org/10.3233/JAD-150559
  26. Fragoso YD, Wille PR, Abreu M, Brooks JBB, Dias RM, Duarte JA, et al. Correlation of clinical findings and brain volume data in multiple sclerosis. J Clin Neurosci 2017;44:155-157 https://doi.org/10.1016/j.jocn.2017.06.006
  27. Steenwijk MD, Amiri H, Schoonheim MM, de Sitter A, Barkhof F, Pouwels PJW, et al. Agreement of MSmetrix with established methods for measuring cross-sectional and longitudinal brain atrophy. Neuroimage Clin 2017;15:843-853 https://doi.org/10.1016/j.nicl.2017.06.034
  28. Finkelsztejn A, Fragoso YD, Bastos EA, Duarte JA, Varela JS, Houbrechts R, et al. Intercontinental validation of brain volume measurements using MSmetrix. Neuroradiol J 2018;31:147-149 https://doi.org/10.1177/1971400917721521
  29. Niemantsverdriet E, Ribbens A, Bastin C, Benoit F, Bergmans B, Bier JC, et al. A retrospective Belgian multicenter MRI biomarker study in Alzheimer's disease (REMEMBER). J Alzheimers Dis 2018;63:1509-1522 https://doi.org/10.3233/JAD-171140
  30. Lee JS, Kim C, Shin JH, Cho H, Shin DS, Kim N, et al. Machine learning-based individual assessment of cortical atrophy pattern in Alzheimer's disease spectrum: development of the classifier and longitudinal evaluation. Sci Rep 2018;8:4161
  31. Biberacher V, Schmidt P, Keshavan A, Boucard CC, Righart R, Samann P, et al. Intra- and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis. Neuroimage 2016;142:188-197 https://doi.org/10.1016/j.neuroimage.2016.07.035
  32. Park JE, Park SY, Kim HJ, Kim HS. Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives. Korean J Radiol 2019;20:1124-1137 https://doi.org/10.3348/kjr.2018.0070
  33. Fellhauer I, Zollner FG, Schroder J, Degen C, Kong L, Essig M, et al. Comparison of automated brain segmentation using a brain phantom and patients with early Alzheime's dementia or mild cognitive impairment. Psychiatry Res 2015;233:299-305 https://doi.org/10.1016/j.pscychresns.2015.07.011
  34. Mulder ER, de Jong RA, Knol DL, van Schijndel RA, Cover KS, Visser PJ, et al. Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST. Neuroimage 2014;92:169-181 https://doi.org/10.1016/j.neuroimage.2014.01.058
  35. Cover KS, van Schijndel RA, Versteeg A, Leung KK, Mulder ER, Jong RA, et al. Reproducibility of hippocampal atrophy rates measured with manual, FreeSurfer, AdaBoost, FSL/FIRST and the MAPS-HBSI methods in Alzheimer's disease. Psychiatry Res Neuroimaging 2016;252:26-35 https://doi.org/10.1016/j.pscychresns.2016.04.006
  36. Nestor SM, Gibson E, Gao FQ, Kiss A, Black SE; Alzheimer's Disease Neuroimaging Initiative. A direct morphometric comparison of five labeling protocols for multi-atlas driven automatic segmentation of the hippocampus in Alzheimer's disease. Neuroimage 2013;66:50-70 https://doi.org/10.1016/j.neuroimage.2012.10.081
  37. Yim Y, Lee JY, Oh SW, Chung MS, Park JE, Moon Y, et al. Comparison of automated brain volume measures by NeuroQuant vs. Freesurfer in patients with mild cognitive impairment: effect of slice thickness. Yonsei Med J 2021;62:255-261 https://doi.org/10.3349/ymj.2021.62.3.255
  38. Lee JB, Lee JY, Oh SW, Chung MS, Park JE, Moon Y, et al. Evaluation of reproducibility of brain volumetry between Inbrain and FreeSurfer. J Clin Neurol 2021;17:307-316 https://doi.org/10.3988/jcn.2021.17.2.307
  39. Lee JY, Oh SW, Chung MS, Park JE, Moon Y, Jeon HJ, et al. Clinically available software for automatic brain volumetry: comparisons of volume measurements and validation of intermethod reliability. Korean J Radiol 2021;22:405-414 https://doi.org/10.3348/kjr.2020.0518
  40. Min J, Moon WJ, Jeon JY, Choi JW, Moon YS, Han SH. Diagnostic efficacy of structural MRI in patients with mild-to-moderate Alzheimer disease: automated volumetric assessment versus visual assessment. AJR Am J Roentgenol 2017;208:617-623 https://doi.org/10.2214/AJR.16.16894
  41. Azab M, Carone M, Ying SH, Yousem DM. Mesial temporal sclerosis: accuracy of NeuroQuant versus neuroradiologist. AJNR Am J Neuroradiol 2015;36:1400-1406 https://doi.org/10.3174/ajnr.A4313
  42. Potvin O, Duchesne S. IC-P-120: normative structural neuroimaging data for age and sex using freesurfer. Alzheimer's & Dementia 2015;11:82
  43. Lee H, Nakamura K, Narayanan S, Brown RA, Arnold DL; Alzheimer's Disease Neuroimaging Initiative. Estimating and accounting for the effect of MRI scanner changes on longitudinal whole-brain volume change measurements. Neuroimage 2019;184:555-565 https://doi.org/10.1016/j.neuroimage.2018.09.062