Acknowledgement
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science, ICT & Future Planning, MSIP) (NRF-2021R1A2C33008989 and No. 2018R1A5A1025137).
References
- Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D.J. (2017), "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks", J. Sound Vib., 388, 154-170. https://doi.org/10.1016/j.jsv.2016.10.043
- Abdeljaber, O., Avci, O., Kiranyaz, M.S., Boashash, B., Sodano, H. and Inman, D.J. (2018), "1-D CNNS for structural damage detection: Verification on a structural health monitoring benchmark data", Neurocomputing, 275, 1308-1317. https://doi.org/10.1016/j.neucom.2017.09.069
- Chen, F. and Jahanshahi, M.R. (2018), "NB-CNN: Deep learning-based crack detection using convolutional neural network and Naive Bayes data fusion", IEEE Trans Ind. Electron., 65(5), 4392-4400. https://doi.org/10.1109/TIE.2017.2764844
- Chen, J. and Loh, C. (2018), "Two-stage damage detection algorithms of structure using modal parameters identified from recursive subspace identification", Earthq. Eng. Struct. D., 47(3), 573-593. https://doi.org/10.1002/eqe.2980
- Chen, C., Jiang, F., Yang, C., Rho, S., Shen, W., Liu, S. and Liu, Z. (2018), "Hyperspectral classification based on spectral-spatial convolutional neural networks", Eng. Appl. Artif. Intell., 68, 165-171. https://doi.org/10.1016/j.engappai.2017.10.015
- Chopra, A.K. (2001), Dynamics of Structures - Theory and Applications to Earthquake Engineering, Pearson, Englewood Cliffs, NJ, USA.
- Esfandiari, A. (2017), "An innovative sensitivity-based method for structural model updating using incomplete modal data", Struct. Control Hlth., 24(4), e1905. https://doi.org/10.1002/stc.1905
- Glisic, B. and Inaudi, D. (2012), "Development of method for inservice crack detection based on distributed fiber optic sensors", Struct. Health Monit., 11(2), 161-171. https://doi.org/10.1177/1475921711414233
- Glisic, B., Inaudi, D., Lau, J.M. and Fong, C.C. (2013), "Ten-year monitoring of high-rise building columns using long-gauge fiber optic sensors", Smart Mater. Struct., 22(5), 055030. https://doi.org/10.1088/0964-1726/22/5/055030
- Guo, Y.L., Kwon, D.K. and Kareem, A. (2016), "Near-real-time hybrid system identification framework for civil structures with application to Burj Khalifa", J. Struct. Eng., 142(2), 04015132. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001402
- Hsu, T.Y., Liao, W.I. and Hsiao, S.Y. (2017), "Damage detection for beam structures based on local flexibility method and macro-strain measurement", Smart Struct. Syst., Int. J., 19(4), 393-402. https://doi.org/10.12989/sss.2017.19.4.393
- Johnson, E.A., Lam, H.F., Katafygiotis, L.S. and Beck, J.L. (2004), "Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data", J. Eng. Mech., 130(1), 3-15. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(3)
- Kaveh, A. and Maniat, M. (2015), "Damage detection based on MCSS and PSO using modal data", Smart Struct. Syst., Int. J., 15(5), 1253-1270. https://doi.org/10.12989/sss.2015.15.5.1253
- Lecun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
- Li, J. and Hao, H. (2014), "Substructure damage identification based on wavelet-domain response reconstruction", Struct. Health Monitor., 13(4), 389-405. https://doi.org/10.1177/1475921714532991
- Li, P., Zhu, H., Luo, H. and Weng, S. (2015), "Structural damage identification based on genetically trained ANNs in beams", Smart Struct. Syst., Int. J., 15(1), 227-244. http://dx.doi.org/10.12989/sss.2015.15.1.227
- Li, Z., Park, H.S. and Adeli, H. (2017), "New method for modal identification of super high-rise building structures using discretized synchrosqueezed wavelet and Hilbert transforms", Des. Tall Spec., 26(3), 273-289. https://doi.org/10.1002/tal.1312
- Liang, Y., Li, D., Song, G. and Zhan, C. (2017), "Damage detection of shear buildings through structural mass-stiffness distribution", Smart Struct. Syst., Int. J., 19(1), 11-20. http://dx.doi.org/10.12989/sss.2017.19.1.011
- Liang, Y., Feng, Q., Li, H. and Jiang, J. (2019), "Damage detection of shear buildings frequency-change-ratio and model updating algorithm", Smart Struct. Syst., Int. J., 23(2), 107-122. http://dx.doi.org/10.12989/sss.2019.23.2.107
- Lin, Y.Z., Nie, Z.H. and Ma, H.W. (2017), "Structural damage detection with automatic feature-extraction through deep learning", Comput.-Aided Civil Inf., 32(12), 1025-1046. https://doi.org/10.1111/mice.12313
- Machavaram, R. and Shankar, K. (2013), "Joint damage identification using improved radial basis function networks in frequency and time domain", Appl. Soft Comput., 13(7), 3366-3379. https://doi.org/10.1016/j.asoc.2013.02.004.
- Oh, B.K., Hwang, J.W., Kim, Y., Cho, T. and Park, H.S. (2015), "Vision-based system identification method for building structures using a motion capture system", J. Sound Vib., 356, 72-85. https://doi.org/10.1016/j.jsv.2015.07.011
- Oh, B.K., Kim, D. and Park, H.S. (2017), "Modal response-based visual system identification and model updating methods for building structures", Comput.-Aided Civil Inf., 32(1), 34-56. https://doi.org/10.1111/mice.12229
- Oppenheim, A.V. and Schafer, R.W. (2011), Discrete-Time Signal Processing, Pearson, Upper Saddle River, NJ, US.
- Pacific Earthquake Engineering Research Center (PEER) (2006), OpenSees: Open System for Earthquake Engineering Simulation, University of California, CA, USA.
- Padil, K.H., Bakhary, N. and Hao, H. (2017), "The use of a non-probabilistic artificial neural network to consider uncertainties in vibration-based-damage detection", Mech. Syst. Signal Pr., 83, 194-209. https://doi.org/10.1016/j.ymssp.2016.06.007
- Park, H.S. and Oh, B.K. (2018a), "Real-time structural health monitoring of a supertall building under construction based on visual modal identification strategy", Automat. Constr., 85, 273-289. https://doi.org/10.1016/j.autcon.2017.10.025
- Park, H.S. and Oh, B.K. (2018b), "Damage detection of building structures under ambient excitation through the analysis of the relationship between the modal participation ratio and story stiffness", J. Sound Vib., 418, 122-143. https://doi.org/10.1016/j.jsv.2017.12.036
- Park, S.W., Park, H.S., Kim, J.H. and Adeli, H. (2015), "3d displacement measurement model for health monitoring of structures using a motion capture system", Measurement, 59, 352-362. https://doi.org/10.1016/j.measurement.2014.09.063
- Park, H.S., Kim, D., Lim, S.A. and Oh, B.K. (2017), "Dynamic torsional response measurement model using motion capture system", Smart Struct. Syst., Int. J., 19(6), 679-694. http://dx.doi.org/10.12989/sss.2017.19.6.679
- Park, S., Jeong, H., Min, H., Lee, H. and Lee, S. (2018), "Wavelet-like convolutional neural network structure for time-series data classification", Smart Struct. Syst., Int. J., 22(2), 175-183. http://dx.doi.org/10.12989/sss.2018.22.2.175
- Sarlo, R., Tarazaga, P.A. and Kasarda, M.E. (2018), "High resolution operational modal analysis on a five-story smart building under wind and human induced excitation", Eng. Struct., 176, 279-292. https://doi.org/10.1016/j.engstruct.2018.08.060
- Sigurdardottir, D.H. and Glisic, B. (2015), "On-Site Validation of Fiber-Optic Methods for Structural Health Monitoring: Streicker Bridge", J. Civil Struct. Health Monitor., 5(4), 529-549. https://doi.org/10.1007/s13349-015-0123-x
- Sigurdardottir, D.H. and Glisic, B. (2014), "Detecting minute damage in beam-like structures using the neutral axis location", Smart Mater. Struct., 23(12), 125042. https://doi:10.1088/0964-1726/23/12/125042
- Sotoudehnia, E., Shahabian, F. and Sani, A.A. (2019), "An iterative method for damage identification of skeletal structures utilizing biconjugate gradient method and reduction of search space", Smart Struct. Syst., Int. J., 23(1), 45-60. http://dx.doi.org/10.12989/sss.2019.23.1.045
- Sun, S.B., He, Y.Y., Zhou, S.D. and Yue, Z.J. (2017), "A data-driven response virtual sensor technique with partial vibration measurements using convolutional neural network", Sensors, 17(12), 2888. https://doi.org/10.3390/s17122888
- Wu, W.H., Chen, C.C., Jhou, J.W. and Lai, G. (2018), "A rapidly convergent empirical mode decomposition method for analyzing the environmental temperature effects on stay cable force", Comput.-Aided Civil Inf., 33(8), 672-690. https://doi.org/10.1111/mice.12355
- Xiong, H., Cao, J., Zhang, F., Ou, X. and Chen, C. (2019), "Investigation of the SHM-oriented model and dynamic characteristics of a super-tall building", Smart Struct. Syst., Int. J., 23(3), 295-306. http://dx.doi.org/10.12989/sss.2019.23.3.295
- Xu, B., Song, G. and Masri, S.F. (2011), "Damage detection for a frame structure model using vibration displacement measurement", Struct. Health Monitor., 11(3), 281-292. http://doi.org/10.1177/1475921711430437
- Xu, Y., Bao, Y., Chen, J., Zuo, W. and Li, H. (2018), "Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images", Struct. Health Monitor., 18(3), 653-674. https://doi.org/10.1177/1475921718764873
- Yin, T., Jiang, Q. and Yuen, K. (2017), "Vibration-based damage detection for structural connections using incomplete modal data by Bayesian approach and model reduction technique", Eng. Struct., 132, 260-277. https://doi.org/10.1016/j.engstruct.2016.11.035
- Zhang, C.D. and Xu, Y.L. (2016), "Structural damage identification via multi-type sensors and response reconstruction", Struct. Health Monitir., 15(6), 715-729. https://doi.org/10.1177/1475921716659787
- Zhang, F.L., Xiong, H.B., Shi, W.X. and Ou, X. (2016), "Structural health monitoring of Shanghai Tower during different stages using a Bayesian approach", Struct. Control Hlth., 23(11), 1366-1384. https://doi.org/10.1002/stc.1840
- Zhu, Y.C., Xie, Y.L. and Au, S.K. (2018), "Operational modal analysis of an eight-storey building with asynchronous data incorporating multiple setups", Eng. Struct., 165, 50-62. https://doi.org/10.1016/j.engstruct.2018.03.011