References
- Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11, 232. http://doi.org/10.1007/s12517-018-3579-2
- Butcher, R.J., Rousseau, C.E. and Tippur, H.V. (1999), "A functionally graded particulate composite: Measurements and Failure Analysis", Acta. Mater., 47(2), 259-268. https://doi.org/10.1016/S1359-6454(98)00305-X
- Callioglu, H., Sayer, M. and Demir, E. (2011), "Stress analysis of functionally graded discs under mechanical and thermal loads", Indian J. Eng. Mater. Sci., 18(2), 111-118.
- Callioglu, H., Sayer, M. and Demir, E. (2015), "Elastic-plastic stress analysis of rotating functionally graded discs", Thin-Wall. Struct., 94, 38-44. https://doi.org/10.1016/j.tws.2015.03.016
- Demir, E., Callioglu, H. and Sayer, M. (2013), "Free vibration of symmetric FG sandwich Timoshenko beam with simply supported edges", Indian J. Eng. Mater. Sci., 20(6), 515-521.
- Erdogan, F. (1995), "Fracture mechanics of functionally graded materials", Computat. Eng., 5(1), 753-770. https://doi.org/10.1016/0961-9526(95)00029-M
- Gasik, M.M. (2010), "Functionally graded materials: bulk processing techniques", Int. J. Mater. Product Technol., 39(1-2), 20-29. https://doi.org/10.1504/IJMPT.2010.034257
- Han, X., Xu, Y.G. and Lam, K.Y. (2001), "Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network", Compos. Sci. Technol., 61(10), 1401-1411. https://doi.org/10.1016/S0266-3538(01)00033-1
- Hedia, H.S., Aldousari, S.M., Abdellatif, A.K. and Fouda, N.A. (2014), "New design of cemented stem using functionally graded materials (FGM)", Biomed. Mater. Eng., 24(3), 1575-1588. https://doi.org/10.3233/BME-140962
- Hirai, T. and Chen, L. (1999), "Recent and prospective development of functionally graded materials in Japan", Mater Sci. Forum, 308(4), 509-514. https://doi.org/10.4028/www.scientific.net/MSF.308-311.509
- Mahamood, R.M. and Akinlabi, E.T. (2017), Functionally Graded Materials, Springer.
- Markworth, A.J., Ramesh, K.S. and Parks, Jr.W.P. (1995), "Review: modeling studies applied to functionally graded materials", J. Mater. Sci., 30(3), 2183-2193. https://doi.org/10.1007/BF01184560
- Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (1999), Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic Publishers, Dordrecht/London/Boston.
- Nemat-Allal, M.M., Ata, M.H., Bayoumi, M.R. and Khair-Eldeen, W. (2011), "Powder metallurgical fabrication and microstructural investigations of Aluminum/Steel functionally graded material", Mater. Sci. Appl., 2(5), 1708-1718. https://doi.org/10.4236/msa.2011.212228
- Panigrahi, B. and Pohit, G. (2016), "Nonlinear modelling and dynamic analysis of cracked Timoshenko functionally graded beams based on neutral surface approach", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230(9), 1468-1497. http://doi.org/10.1177/0954406215576560
- Rizov, V.I. (2017), "Analysis of longitudinal cracked two-dimensional functionally graded beams exhibiting material non-linearity", Frattura ed Integrita Strutturale, 41, 498-510. https://doi.org/10.3221/IGF-ESIS.41.61
- Rizov, V.I. (2018a), "Non-linear fracture in bi-directional graded shafts in torsion", Multidiscipl. Model. Mater. Struct., 15(1), 156-169. https://doi.org/10.1108/MMMS-12-2017-0163
- Rizov, V.I. (2018b), "Analysis of cylindrical delamination cracks in multilayered functionally graded nonlinear elastic circular shafts under combined loads", Frattura ed Integrita Strutturale, 46, 158-17. https://doi.org/10.3221/IGF-ESIS.46.16
- Rizov, V.I. (2019), "Influence of material inhomogeneity and non-linear mechanical behavior of the material on delamination in multilayered beams", Frattura ed Integrita Strutturale, 47, 468-481. https://doi.org/10.3221/IGF-ESIS.47.37
- Rizov, V.I. (2020), "Longitudinal fracture analysis of inhomogeneous beams with continuously changing radius of cross-section along the beam length", Strength Fract. Complexity: Int. J., 13, 31-43. https://doi.org/10.3233/SFC-200250
- Rizov, V. and Altenbach, H. (2020), "Longitudinal fracture analysis of inhomogeneous beams with continuously varying sizes of the cross-section along the beam length", Frattura ed Integrita Strutturale, 53, 38-50. https://doi.org/10.3221/IGF-ESIS.53.04
- Saiyathibrahim, A., Subramaniyan, R. and Dhanapl, P. (2016), "Centrefugally cast functionally graded materials - review", Proceedings of International Conference on Systems, Science, Control, Communications, Engineering and Technology, pp. 68-73.
- Sofiyev, A.H. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the Pasternak foundation", Engineering, 2, 228-236. https://doi.org/10.4236/eng.2010.24033
- Sofiyev, A.H., Alizada, A.N., Akin, O. Valiyev, A., Avcar, M. and Adiguzel, S. (2012), "On the stability of FGM shells subjected to combined loads with different edge conditions and resting on elastic foundations", Acta Mech., 223, 189-204. https://doi.org/10.1007/s00707-011-0548-1
- Udupa, G., Rao, S.S. and Gangadharan, K.V. (2014), "Functionally graded composite materials: an overview", Procedia Mater. Sci., 5(1), 1291-1299. https://doi.org/10.1016/j.mspro.2014.07.442
- Uslu Uysal, M. (2015), "Buckling of functional graded polymeric sandwich panel under different load cases", Compos. Struct., 121, 182-196. https://doi.org/10.1016/j.compstruct.2014.11.012
- Uslu Uysal, M. (2016), "Buckling behaviours of functionally graded polymeric thin-walled hemispherical shells", Steel Compos. Struct., Int. J., 21(1), 849-862. https://doi.org/10.12989/scs.2016.21.4.849
- Uslu Uysal, M. and Guven, U. (2016), "A bonded plate having orthotropic inclusion in the adhesive layer under in-plane shear loading", J. Adhes., 92, 214-235. https://doi.org/10.1080/00218464.2015.1019064
- Uslu Uysal, M. and Kremzer, M. (2015), "Buckling behaviour of short cylindrical functionally gradient polymeric materials", Acta Physica Polonica, A127, 1355-1357. https://doi.org/10.12693/APhysPolA.127.1355
- Wei, D., Liu, Y. and Xiang, Z. (2012), "An analytical method for free vibration analysis of functionally graded beams with edge cracks", J. Sound Vib., 331(7), 1686-1700. https://doi.org/10.1016/j.jsv.2011.11.020
- Wu, X.L., Jiang, P., Chen, L., Zhang, J.F., Yuan, F.P. and Zhu, Y.T. (2014), "Synergetic strengthening by gradient structure", Mater. Res. Lett., 2(1), 185-191. https://doi.org/10.1080/21663831.2014.935821
- Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006