DOI QR코드

DOI QR Code

Analysis and sizing of RC beams reinforced by external bonding of imperfect functionally graded plate

  • Rabia, Benferhat (Laboratory of Geomatics and sustainable development, University of Tiaret) ;
  • Daouadji, Tahar Hassaine (Laboratory of Geomatics and sustainable development, University of Tiaret) ;
  • Abderezak, Rabahi (Laboratory of Geomatics and sustainable development, University of Tiaret)
  • Received : 2020.03.26
  • Accepted : 2021.01.27
  • Published : 2021.06.25

Abstract

An analytical method based on the compatibility of deformations and equilibrium of forces is investigated to predict the reinforcement plate area in concrete beams strengthened with Functionally Graded (FG) plates bonded to the tension face of the beams. The models are given for beams having rectangular and T-cross-sections. The effect of porosity that can happen inside FGM materials during their manufacture is also shown. New rules of the mixture that take into account different distribution rates of porosity in FG plates have been developed in this study. A parametric study is conducted to investigate the effect of several parameters such as the ultimate moment, plate stiffness, the distribution rate of the porosity, and compressive strength of the concrete. The results obtained show a significant gain in the reinforcement plate area of the RC beam strengthened with an FG plate relative to another reinforced with FRP plate, which makes it possible to reduce the interfacial stresses and prevents detachment of the reinforcing plate.

Keywords

Acknowledgement

This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n° A01L02UN140120200002 and by the University of Tiaret, in Algeria.

References

  1. Abdelhak, Z., Hadji, L., Daouadji, T.H. and Adda Bedia, E.A. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., Int. J., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267
  2. Abderezak, R., Daouadji, T.H., Rabia, B. and Belkacem, A. (2018b), "Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads", Earthq. Struct., Int. J., 15(2), 113-122. https://doi.org/10.12989/eas.2018.15.2.113
  3. Abderezak, R., Daouadji, T.H., Abbes, B., Rabia, B., Belkacem, A. and Abbes, F. (2018b), "Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage", Adv. Mater. Res., Int. J., 6(3), 257-278. https://doi.org/10.12989/amr.2017.6.3.257
  4. Abderezak, R., Rabia, B., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2019), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Adv. Mater. Res., Int. J., 7(2), 83-103. https://doi.org/10.12989/amr.2018.7.2.083
  5. Abderezak, R., Daouadji, T.H. and Rabia, B. (2020), "Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate", Coupl. Syst. Mech., Int. J., 9(5), 473-498. http://dx.doi.org/10.12989/csm.2020.9.5.473
  6. Adim, B. and Daouadji, T.H. (2016), "Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory", Adv. Mater. Res., Int. J., 5(4), 223-244. https://doi.org/10.12989/amr.2016.5.4.223
  7. Adim, B., Daouadji, T.H. and Abbes, B. (2016a), "Buckling analysis of anti-symmetric cross-ply laminated composite plates under different boundary conditions", Int. Appl. Mech., 52(6), 126-141. https://doi.org/10.1007/s10778-016-0787-x
  8. Adim, B., Daouadji, T.H., Rabia, B. and Hadji, L. (2016b), "An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions", Earthq. Struct., Int. J., 11(1), 63-82. https://doi.org/10.12989/eas.2016.11.1.063
  9. Adim, B., Daouadji, T.H., Abbes, B. and Rabahi, A. (2016c), "Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory", Mech. Ind., 17, 512. https://doi.org/10.1051/meca/2015112
  10. Aicha, K., Rabia, B., Daouadji, T.H. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Coupl. Syst. Mech., Int. J., 9(6), 575-597. http://doi.org/10.12989/csm.2020.9.6.575
  11. Al-Amery, R. and Al-Mahaidi, R. (2006), "Coupled flexural-shear retrofitting of RC beams using CFRP straps", Compos. Struct., 75, 457-464. https://doi.org/10.1016/j.compstruct.2006.04.037
  12. Ameur, M., Tounsi, A., Benyoucef, S., Bouiadjra, M.B. and Bedia, E.A. (2009), "Stress analysis of steel beams strengthened with a bonded hygrothermal aged composite plate", Int. J. Mech. Mater. Des., 5, 143-156. https://doi.org/10.1007/s10999-008-9090-2
  13. Ashour, A.F. (2002), "Size of FRP laminates to strengthen reinforced concrete sections in flexure", Struct. Build., 152(3), 225-233. https://doi.org/10.1680/stbu.2002.152.3.225
  14. Ashour, A.F. (2006), "Flexural and shear capacities of concrete beams reinforced with GFRP bars", Constr. Build. Mater., 20, 1005-1015. https://doi.org/10.1016/j.conbuildmat.2005.06.023
  15. Benferhat, R., Daouadji, T.H., Mansour, M.S. and Hadji, L. (2016a), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., Int. J., 10(6), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429
  16. Benferhat, R., Daouadji, T.H. and Adim, B. (2016b), "A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load", Adv. Mater. Res., Int. J., 5(2), 107-120. https://doi.org/10.12989/amr.2016.5.2.107
  17. Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2016c), "Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory", Comptes Rendus Mecanique, 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002
  18. Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., Int. J., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761
  19. Benhenni, M.A., Daouadji, T.H., Abbes, B., Adim, B., Li, Y. and Abbes, F. (2018), "Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates", Adv. Mater. Res., Int. J., 7(2), 83-103. https://doi.org/10.12989/amr.2018.7.2.119
  20. Benhenni, M.A., Daouadji, T.H., Abbes, B., Abbes, F., Li, Y. and Adim, B. (2019), "Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions", Struct. Eng. Mech., Int. J., 70(5), 535-549. https://doi.org/10.12989/sem.2019.70.5.535
  21. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2018), "Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory", Adv. Mater. Res., Int. J., 7(3), 163-174. https://doi.org/10.12989/amr.2018.7.3.163
  22. Bensattalah, T., Daouadji, T.H. and Zidour, M. (2020), "Influences the Shape of the Floor on the Behavior of Buildings Under Seismic Effect", Proceedings of the 4th International Symposium on Materials and Sustainable Development, Volume 1 - Nano Technology and Advanced Materials, pp. 26-42. https://doi.org/10.1007/978-3-030-43268-3_3
  23. Chedad, A., Daouadji, T.H., Abderezak, R., Adim, B., Abbes, B., Rabia, B. and Abbes, F. (2018), "A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams", Adv. Mater. Res., Int. J., 6(4), 317-328. https://doi.org/10.12989/amr.2017.6.4.317
  24. Chergui, S., Daouadji, T.H., Hamrat, M., Boulekbache, B., Bougara, A., Abbes, B. and Amziane, S. (2019), "Interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate plate: Analytical and numerical study", Adv. Mater. Res., Int. J., 8(3), 197-217. https://doi.org/10.12989/amr.2019.8.3.197
  25. Daouadji, T.H. (2013), "Analytical analysis of the interfacial stress in damaged reinforced concrete beams strengthened by bonded composite plates", Strength Mater., 45(5), 587-597. https://doi.org/10.1007/s11223-013-9496-4
  26. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Computat. Des., Int. J., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057
  27. Daouadji, H.T., Benyoucef, S., Tounsi, A., Benrahou, K.H. and Bedia, A.E. (2008), "Interfacial stress concentrations in FRP-damaged RC hybrid beams", Compos. Interf., 15(4), 425-440. https://doi.org/10.1163/156855408784514702
  28. Daouadji, T.H., Rabahi, A., Abbes, B. and Adim, B. (2016a), "Theoretical and finite element studies of interfacial stresses in reinforced concrete beams strengthened by externally FRP laminates plate", J. Adhes. Sci. Technol., 30(12), 1253-1280. https://doi.org/10.1080/01694243.2016.1140703
  29. Daouadji, T.H., Hadji, L., Meziane, M.A.A. and Bekki, H. (2016b), "Elastic analysis effect of adhesive layer characteristics in steel beam strengthened with a fiber-reinforced polymer plates", Struct. Eng. Mech., Int. J., 59(1), 83-100. https://doi.org/10.12989/sem.2016.59.1.083
  30. Fareed, S. (2014), "Behaviour of reinforced concrete beams strengthened by CFRP wraps with and without end anchorages", Procedia Eng., 77, 123-130. https://doi.org/10.1016/j.proeng.2014.07.011
  31. Gao, P., Gu, X. and Mosallam, A.S. (2016), "Flexural behavior of preloaded reinforced concrete beams strengthened by prestressed CFRP laminates", Compos. Struct., 157(1), 33-50. https://doi.org/10.1016/j.compstruct.2016.08.013
  32. Guo, R., Hu, W., Li, M. and Wang, B. (2020), "Study on the flexural strengthening effect of RC beams reinforced by FRP grid with PCM shotcrete", Compos. Struct., 239(1), 112000. https://doi.org/10.1016/j.compstruct.2020.112000
  33. Hadji, L., Daouadji, T.H. and Bedia, E.A. (2015), "A refined exponential shear deformation theory for free vibration of FGM beam with porosities", Geomech. Eng., Int. J., 9(3), 361-372. https://doi.org/10.12989/gae.2015.9.3.361
  34. Hadj, B., Rabia, B. and Daouadji, T.H. (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., Int. J., 72(1), 823-832. https://doi.org/10.12989/sem.2019.72.1.061
  35. Hamrat, M., Bouziadi, F., Boulekbache, B., Daouadji, T.H., Chergui, S., Labed, A. and Amziane, S. (2020), "Experimental and numerical investigation on the deflection behavior of pre-cracked and repaired reinforced concrete beams with fiber-reinforced polymer", Constr. Build. Mater., 249, 118745. http://dx.doi.org/10.1016/j.conbuildmat.2020.118745
  36. Kim, M., Pokhrel, A., Jung, D., Kim, S. and Park, C. (2017), "The Strengthening Effect of CFRP for Reinforced Concrete Beam", Procedia Eng., 210, 141-147. https://doi.org/10.1016/j.proeng.2017.11.059
  37. Murthy, A.R., Aravindan, M. and Ganesh, P. (2018), "Prediction of flexural behaviour of RC beams strengthened with ultra high performance fiber reinforced concrete", Struct. Eng. Mech., Int. J., 65(3), 315-325. https://doi.org/10.12989/sem.2018.65.3.315
  38. Oller, E., Pujol, M. and Mari, A. (2019), "Contribution of externally bonded FRP shear reinforcement to the shear strength of RC beams", Compos. Part B, 164(1), 235-248. https://doi.org/10.1016/j.compositesb.2018.11.065.
  39. Picard, A., Massicotte, B. and Boucher, E. (1995), "Strengthening of reinforced concrete beams with composite materials: theoretical study", Compos. Struct., 33, 63-75. https://doi.org/10.1016/0263-8223(95)00106-9
  40. Pradhan, K.K. and Chakraverty, S. (2015), "Free vibration of functionally graded thin elliptic plates with various edge support", Struct. Eng. Mech., Int. J., 53(2), 337-354. https://doi.org/10.12989/sem.2015.53.2.337
  41. Rabahi, A., Daouadji, T.H., Abbes, B. and Adim, B. (2016), "Analytical and numerical solution of the interfacial stress in reinforced-concrete beams reinforced with bonded prestressed composite plate", J. Reinf. Plast. Compos., 35(3), 258-272. https://doi.org/10.1177/0731684415613633
  42. Rabia, B., Abderezak, R., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2018), "Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentially-varying properties plate", Adv. Mater. Res., Int. J., 7(1), 29-44. https://doi.org/10.12989/amr.2018.7.1.029
  43. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate", Earthq. Struct., Int. J., 16(5), 601-609. https://doi.org/10.12989/eas.2019.16.5.601
  44. Rabia, B., Tahar, H.D. and Abderezak, R. (2020a), "Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Coupl. Syst. Mech., Int. J., 9(6), 499-519. http://doi.org/10.12989/csm.2020.9.6.499
  45. Rabia, B., Daouadji, T.H. and Abderezak, R. (2020b), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., Int. J., 9(4), 265-287. http://doi.org/10.12989/amr.2020.9.4.265
  46. Rabahi, A., Daouadji, T.H., Abbes, B. and Adim, B. (2016), "Analytical and numerical solution of the interfacial stress in reinforced-concrete beams reinforced with bonded prestressed composite plate", J. Reinf. Plast. Compos., 35(3), 258-272. https://doi.org/10.1177/0731684415613633
  47. Rao, G.A. and Injaganeri, S.S. (2011), "Evaluation of size dependent design shear strength of reinforced concrete beams without web reinforcement", Ind. Acad. Sci., 36(3), 393-410. https://doi.org/10.1007/s12046-011-0029-1
  48. Rasheed, H.A. and Pervaiz, S. (2003), "Closed form equations for FRP flexural strengthening design of RC beams", Composites: Part B: Eng., 34, 539-550. https://doi.org/10.1016/S1359-8368(03)00047-7
  49. Sharaky, I.A., Baena, M., Barris, C., Sallam, H.E.M. and Torres, L. (2018), "Effect of axial stiffness of NSM FRP reinforcement and concrete cover confinement on flexural behaviour of strengthened RC beams: Experimental and numerical study", Eng. Struct., 173, 987-1001. https://doi.org/10.1016/j.engstruct.2018.07.062.
  50. Tahar, H.D., Boussad, A., Abderezak, R., Rabia, B., Fazilay, A. and Belkacem, A. (2019), "Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study", Struct. Eng. Mech., Int. J., 72(4), 409-419. https://doi.org/10.12989/sem.2019.72.4.409
  51. Tahar, H.D., Abderezak, R. and Rabia, B. (2020), "Flexural performance of wooden beams strengthened by composite plate", Struct. Monitor. Maint., Int. J., 7(3), 233-259. http://doi.org/10.12989/smm.2020.7.3.233
  52. Tayeb, B. and Daouadji, T.H. (2020), "Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive", Adv. Mater. Res., Int. J., 9(2), 133-153. https://doi.org/10.12989/amr.2020.9.2.133
  53. Thai, H.T. and Choi, D.H (2013), "Finite element formulation of various four unknown shear deformation theories for functionally graded plates", Finite Elem. Anal. Des., 75, 50-61. https://doi.org/10.1016/j.finel.2013.07.003
  54. Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., Int. J., 77(2), 217-229. http://doi.org/10.12989/sem.2021.77.2.217
  55. Tounsi, A., Daouadji, T.H. and Benyoucef, S. (2008), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Int. J. Adhes. Adhes., 29, 343-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008
  56. Wattanasakulponga, N. and Ungbhakornb, V. (2014), "Linear and non linear vibration analysis of elastically restrained ends FGM beams with porosities", Aero. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002
  57. Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049
  58. Zenkour, A.M. and Radwan, A.F. (2018), "Compressive study of functionally graded plates resting on Winkler-Pasternak foundations under various boundary conditions using hyperbolic shear deformation theory", Arch. Civil Mech. Eng., 18, 645-658. https://doi.org/10.1016/j.acme.2017.10.003
  59. Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68(1-3), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2